hellonlp's picture
Update README.md
b53f5fb verified
metadata
language:
  - zh
license: mit
pipeline_tag: sentence-similarity

SimCSE(sup)

Data List

The following datasets are all in Chinese.

Data size(train) size(valid) size(test)
ATEC 62477 20000 20000
BQ 100000 10000 10000
LCQMC 238766 8802 12500
PAWSX 49401 2000 2000
STS-B 5231 1458 1361
SNLI 146828 2699 2618
MNLI 122547 2932 2397

Model List

The evaluation dataset is in Chinese, and we used the same language model RoBERTa base on different methods. In addition, considering that the test set of some datasets is small, which may lead to a large deviation in evaluation accuracy, the evaluation data here uses train, valid and test at the same time, and the final evaluation result adopts the weighted average (w-avg) method.

Model STS-B(w-avg) ATEC BQ LCQMC PAWSX Avg.
BAAI/bge-large-zh 78.61 - - - - -
BAAI/bge-large-zh-v1.5 79.07 - - - - -
hellonlp/simcse-large-zh 81.32 - - - - -

Uses

You can use our model for encoding sentences into embeddings

import torch
from transformers import BertTokenizer
from transformers import BertModel
from sklearn.metrics.pairwise import cosine_similarity

# model
simcse_sup_path = "hellonlp/simcse-roberta-large-zh"
tokenizer = BertTokenizer.from_pretrained(simcse_sup_path)
MODEL = BertModel.from_pretrained(simcse_sup_path)

def get_vector_simcse(sentence):
    """
    预测simcse的语义向量。
    """
    input_ids = torch.tensor(tokenizer.encode(sentence)).unsqueeze(0)
    output = MODEL(input_ids)
    return output.last_hidden_state[:, 0].squeeze(0)

embeddings = get_vector_simcse("武汉是一个美丽的城市。")
print(embeddings.shape)
#torch.Size([1024])

You can also compute the cosine similarities between two sentences

def get_similarity_two(sentence1, sentence2):
    vec1 = get_vector_simcse(sentence1).tolist()
    vec2 = get_vector_simcse(sentence2).tolist()
    similarity_list = cosine_similarity([vec1], [vec2]).tolist()[0][0]
    return similarity_list

sentence1 = '你好吗'
sentence2 = '你还好吗'
result = get_similarity_two(sentence1,sentence2)
print(result)
#0.848331