Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 1474454086
- CO2 Emissions (in grams): 2.1803
Validation Metrics
- Loss: 0.177
- Accuracy: 0.957
- Precision: 0.839
- Recall: 0.888
- F1: 0.863
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086
Or Python API:
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
GitHub Link to this project : Telegram Trade Msg Backtest ML
Need custom model for your application? : Place a order on hjLabs.in : Custom Token Classification or Named Entity Recognition (NER) model as in Natural Language Processing (NLP) Machine Learning
What this repository contains? :
Label data using LabelStudio NER(Named Entity Recognition or Token Classification) tool. convert to
Convert LabelStudio CSV or JSON to HuggingFace-autoTrain dataset conversion script
Use Hugginface-autoTrain model to predict labels on new data in LabelStudio using LabelStudio-ML-Backend.
Define python function to predict labels using Hugginface-autoTrain model.
Only label new data from newly predicted-labels-dataset that has falsified labels.
Backtest Truely labelled dataset against real historical data of the stock using zerodha kiteconnect and jugaad_trader.
Evaluate total gained percentage since inception summation-wise and compounded and plot.
Listen to telegram channel for new LIVE messages using telegram API for algotrading.
Serve the app as flask web API for web request and respond to it as labelled tokens.
Outperforming or underperforming results of the telegram channel tips against exchange index by percentage.
Place a custom order on hjLabs.in : https://hjLabs.in
Social Media :
- WhatsApp/917016525813
- telegram/hjlabs
- Gmail/hemangjoshi37a@gmail.com
- Facebook/hemangjoshi37
- Twitter/HemangJ81509525
- LinkedIn/hemang-joshi-046746aa
- Tumblr/hemangjoshi37a-blog
- Pinterest/hemangjoshi37a
- Blogger/hemangjoshi
- Instagram/hemangjoshi37
Checkout Our Other Repositories
- pyPortMan
- transformers_stock_prediction
- TrendMaster
- hjAlgos_notebooks
- AutoCut
- My_Projects
- Cool Arduino and ESP8266 or NodeMCU Projects
- Telegram Trade Msg Backtest ML
Checkout Our Other Products
- WiFi IoT LED Matrix Display
- SWiBoard WiFi Switch Board IoT Device
- Electric Bicycle
- Product 3D Design Service with Solidworks
- AutoCut : Automatic Wire Cutter Machine
- Custom AlgoTrading Software Coding Services
- SWiBoard :Tasmota MQTT Control App
- Custom Token Classification or Named Entity Recognition (NER) model as in Natural Language Processing (NLP) Machine Learning
Some Cool Arduino and ESP8266 (or NodeMCU) IoT projects:
- IoT_LED_over_ESP8266_NodeMCU : Turn LED on and off using web server hosted on a nodemcu or esp8266
- ESP8266_NodeMCU_BasicOTA : Simple OTA (Over The Air) upload code from Arduino IDE using WiFi to NodeMCU or ESP8266
- IoT_CSV_SD : Read analog value of Voltage and Current and write it to SD Card in CSV format for Arduino, ESP8266, NodeMCU etc
- Honeywell_I2C_Datalogger : Log data in A SD Card from a Honeywell I2C HIH8000 or HIH6000 series sensor having external I2C RTC clock
- IoT_Load_Cell_using_ESP8266_NodeMC : Read ADC value from High Precision 12bit ADS1015 ADC Sensor and Display on SSD1306 SPI Display as progress bar for Arduino or ESP8266 or NodeMCU
- IoT_SSD1306_ESP8266_NodeMCU : Read from High Precision 12bit ADC seonsor ADS1015 and display to SSD1306 SPI as progress bar in ESP8266 or NodeMCU or Arduino
Our HuggingFace Models :
Our HuggingFace Datasets :
- Downloads last month
- 18