|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- crows_pairs |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: gpt2_crows_pairs_finetuned |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: crows_pairs |
|
type: crows_pairs |
|
config: crows_pairs |
|
split: test |
|
args: crows_pairs |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7781456953642384 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt2_crows_pairs_finetuned |
|
|
|
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the crows_pairs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0946 |
|
- Accuracy: 0.7781 |
|
- Tp: 0.3444 |
|
- Tn: 0.4338 |
|
- Fp: 0.1159 |
|
- Fn: 0.1060 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:| |
|
| 0.7371 | 1.05 | 20 | 0.7345 | 0.4669 | 0.4305 | 0.0364 | 0.5132 | 0.0199 | |
|
| 0.6794 | 2.11 | 40 | 0.6829 | 0.5397 | 0.3013 | 0.2384 | 0.3113 | 0.1490 | |
|
| 0.5972 | 3.16 | 60 | 0.6602 | 0.6291 | 0.3411 | 0.2881 | 0.2616 | 0.1093 | |
|
| 0.4691 | 4.21 | 80 | 0.6568 | 0.6788 | 0.3742 | 0.3046 | 0.2450 | 0.0762 | |
|
| 0.3645 | 5.26 | 100 | 0.5872 | 0.7252 | 0.2815 | 0.4437 | 0.1060 | 0.1689 | |
|
| 0.2645 | 6.32 | 120 | 0.6835 | 0.7185 | 0.2318 | 0.4868 | 0.0629 | 0.2185 | |
|
| 0.1698 | 7.37 | 140 | 0.7757 | 0.7483 | 0.2914 | 0.4570 | 0.0927 | 0.1589 | |
|
| 0.1386 | 8.42 | 160 | 0.7445 | 0.7417 | 0.2881 | 0.4536 | 0.0960 | 0.1623 | |
|
| 0.077 | 9.47 | 180 | 1.0591 | 0.7252 | 0.3642 | 0.3609 | 0.1887 | 0.0861 | |
|
| 0.0836 | 10.53 | 200 | 1.0908 | 0.7185 | 0.2649 | 0.4536 | 0.0960 | 0.1854 | |
|
| 0.0485 | 11.58 | 220 | 1.2155 | 0.7450 | 0.3709 | 0.3742 | 0.1755 | 0.0795 | |
|
| 0.0298 | 12.63 | 240 | 1.1973 | 0.7417 | 0.3245 | 0.4172 | 0.1325 | 0.1258 | |
|
| 0.0444 | 13.68 | 260 | 1.4213 | 0.7384 | 0.3675 | 0.3709 | 0.1788 | 0.0828 | |
|
| 0.0215 | 14.74 | 280 | 1.4907 | 0.7450 | 0.3278 | 0.4172 | 0.1325 | 0.1225 | |
|
| 0.0483 | 15.79 | 300 | 1.5485 | 0.7583 | 0.2781 | 0.4801 | 0.0695 | 0.1722 | |
|
| 0.0129 | 16.84 | 320 | 1.7145 | 0.7550 | 0.2748 | 0.4801 | 0.0695 | 0.1755 | |
|
| 0.0525 | 17.89 | 340 | 1.7827 | 0.7550 | 0.3642 | 0.3907 | 0.1589 | 0.0861 | |
|
| 0.0074 | 18.95 | 360 | 1.6230 | 0.7682 | 0.2980 | 0.4702 | 0.0795 | 0.1523 | |
|
| 0.004 | 20.0 | 380 | 1.8522 | 0.7384 | 0.3444 | 0.3940 | 0.1556 | 0.1060 | |
|
| 0.0067 | 21.05 | 400 | 1.8479 | 0.7616 | 0.3046 | 0.4570 | 0.0927 | 0.1457 | |
|
| 0.001 | 22.11 | 420 | 1.9830 | 0.7682 | 0.2947 | 0.4735 | 0.0762 | 0.1556 | |
|
| 0.01 | 23.16 | 440 | 1.9412 | 0.7715 | 0.3113 | 0.4603 | 0.0894 | 0.1391 | |
|
| 0.0048 | 24.21 | 460 | 2.0075 | 0.7649 | 0.3510 | 0.4139 | 0.1358 | 0.0993 | |
|
| 0.0025 | 25.26 | 480 | 2.0912 | 0.7649 | 0.2980 | 0.4669 | 0.0828 | 0.1523 | |
|
| 0.0013 | 26.32 | 500 | 2.1548 | 0.7715 | 0.3444 | 0.4272 | 0.1225 | 0.1060 | |
|
| 0.0041 | 27.37 | 520 | 2.1337 | 0.7682 | 0.3543 | 0.4139 | 0.1358 | 0.0960 | |
|
| 0.0005 | 28.42 | 540 | 2.1242 | 0.7550 | 0.3576 | 0.3974 | 0.1523 | 0.0927 | |
|
| 0.0124 | 29.47 | 560 | 2.1297 | 0.7583 | 0.3642 | 0.3940 | 0.1556 | 0.0861 | |
|
| 0.0104 | 30.53 | 580 | 2.0057 | 0.7583 | 0.3179 | 0.4404 | 0.1093 | 0.1325 | |
|
| 0.0156 | 31.58 | 600 | 2.0365 | 0.7483 | 0.2881 | 0.4603 | 0.0894 | 0.1623 | |
|
| 0.0003 | 32.63 | 620 | 1.9614 | 0.7649 | 0.3212 | 0.4437 | 0.1060 | 0.1291 | |
|
| 0.0029 | 33.68 | 640 | 1.9658 | 0.7682 | 0.3245 | 0.4437 | 0.1060 | 0.1258 | |
|
| 0.0001 | 34.74 | 660 | 1.9913 | 0.7649 | 0.3013 | 0.4636 | 0.0861 | 0.1490 | |
|
| 0.0001 | 35.79 | 680 | 2.0039 | 0.7649 | 0.3013 | 0.4636 | 0.0861 | 0.1490 | |
|
| 0.0004 | 36.84 | 700 | 1.9657 | 0.7715 | 0.3146 | 0.4570 | 0.0927 | 0.1358 | |
|
| 0.0003 | 37.89 | 720 | 1.9787 | 0.7748 | 0.3245 | 0.4503 | 0.0993 | 0.1258 | |
|
| 0.0007 | 38.95 | 740 | 1.9888 | 0.7781 | 0.3377 | 0.4404 | 0.1093 | 0.1126 | |
|
| 0.0002 | 40.0 | 760 | 2.0293 | 0.7682 | 0.3477 | 0.4205 | 0.1291 | 0.1026 | |
|
| 0.0002 | 41.05 | 780 | 1.9914 | 0.7781 | 0.3245 | 0.4536 | 0.0960 | 0.1258 | |
|
| 0.0003 | 42.11 | 800 | 2.0444 | 0.7583 | 0.2914 | 0.4669 | 0.0828 | 0.1589 | |
|
| 0.0072 | 43.16 | 820 | 2.0247 | 0.7649 | 0.3278 | 0.4371 | 0.1126 | 0.1225 | |
|
| 0.0001 | 44.21 | 840 | 2.0398 | 0.7682 | 0.3278 | 0.4404 | 0.1093 | 0.1225 | |
|
| 0.0001 | 45.26 | 860 | 2.0358 | 0.7682 | 0.3278 | 0.4404 | 0.1093 | 0.1225 | |
|
| 0.0011 | 46.32 | 880 | 2.0432 | 0.7682 | 0.3278 | 0.4404 | 0.1093 | 0.1225 | |
|
| 0.0001 | 47.37 | 900 | 2.0923 | 0.7781 | 0.3444 | 0.4338 | 0.1159 | 0.1060 | |
|
| 0.0 | 48.42 | 920 | 2.0975 | 0.7781 | 0.3444 | 0.4338 | 0.1159 | 0.1060 | |
|
| 0.0002 | 49.47 | 940 | 2.0946 | 0.7781 | 0.3444 | 0.4338 | 0.1159 | 0.1060 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|