SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v3")
# Run inference
sentences = [
'What is the ritual of Snan or bathing?',
'Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during Mahakumbh has special significance. It is believed that by bathing in this holy confluence, all the sins of a person are washed away and he attains salvation.\n\nBathing not only symbolizes personal purification, but it also conveys the message of social harmony and unity, where people from different cultures and communities come together to participate in this sacred ritual.\n\nIt is considered that in special circumstances, the water of rivers also acquires a special life-giving quality, i.e. nectar, which not only leads to spiritual development along with purification of the mind, but also gives physical benefits by getting health.',
'The art of knitting is a fascinating hobby that allows individuals to create beautiful and functional pieces from yarn. By intertwining strands of wool or cotton, one can produce items ranging from scarves to intricate sweaters. This craft has been passed down through generations, often bringing family members together for cozy evenings filled with creativity and conversation.\n\nKnitting not only provides a sense of accomplishment with every completed project but also promotes focus and relaxation, making it an excellent activity for reducing stress. Furthermore, the choice of colors and patterns can result in vibrant works of art, showcasing the unique style and personality of the knitter. Engaging in this craft often leads to new friendships within community groups that gather to share techniques and ideas, fostering a sense of belonging among enthusiasts.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
val_evaluator
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8156 |
cosine_accuracy@5 | 0.9929 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8156 |
cosine_precision@5 | 0.1986 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8156 |
cosine_recall@5 | 0.9929 |
cosine_recall@10 | 1.0 |
cosine_ndcg@5 | 0.9155 |
cosine_ndcg@10 | 0.918 |
cosine_ndcg@100 | 0.918 |
cosine_mrr@5 | 0.8891 |
cosine_mrr@10 | 0.8903 |
cosine_mrr@100 | 0.8903 |
cosine_map@100 | 0.8903 |
dot_accuracy@1 | 0.8156 |
dot_accuracy@5 | 0.9929 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.8156 |
dot_precision@5 | 0.1986 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.8156 |
dot_recall@5 | 0.9929 |
dot_recall@10 | 1.0 |
dot_ndcg@5 | 0.9155 |
dot_ndcg@10 | 0.918 |
dot_ndcg@100 | 0.918 |
dot_mrr@5 | 0.8891 |
dot_mrr@10 | 0.8903 |
dot_mrr@100 | 0.8903 |
dot_map@100 | 0.8903 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 563 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 563 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 16.33 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 93.51 tokens
- max: 402 tokens
- min: 16 tokens
- mean: 109.62 tokens
- max: 269 tokens
- Samples:
anchor positive negative Are there attached bathrooms in tents?
Attached bathroom facilities in tents vary by vendor and tent type. To know more about the availability of attached bathrooms, please reach out to your chosen Tent City vendor. For more information about these vendors and their services, please click here
The colors of the rainbow blend seamlessly across the canvas of the sky, creating a stunning visual display. Enjoying the beauty of nature can greatly enhance one's mood and inspire creativity. Take a moment to appreciate the vibrant hues and how they interact, as this can lead to a greater understanding of art and light. Exploring different forms of expression allows for personal growth and emotional exploration.
Are there any discounts for senior citizens or children on buses traveling from the Bus Stand to the Mela?
No, there are no specific discounts available for senior citizens or children on buses traveling from the Bus Stand to the Mela. Standard ticket prices generally apply to all passengers.
The vibrant colors of autumn leaves create a breathtaking scene as they cascade gently to the ground. Local parks become havens for photographers and nature enthusiasts alike, capturing the fleeting beauty of the season. Crisp air invigorates leisurely strolls, while children gather acorns and pinecones, crafting treasures from nature’s bounty.
Are there any luggage porter services available at Prayagraj Junction for pilgrims heading to the Mela?
Yes, luggage porter services are available at Prayagraj Junction for pilgrims heading to the Mela. These porters, often referred to as coolies
can be hired directly at the station to assist with carrying luggage from the train platform to your onward transport or directly to the Mela area.
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01}
Evaluation Dataset
Unnamed Dataset
- Size: 141 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 141 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 16.05 tokens
- max: 30 tokens
- min: 8 tokens
- mean: 88.91 tokens
- max: 324 tokens
- min: 27 tokens
- mean: 104.84 tokens
- max: 262 tokens
- Samples:
anchor positive negative What family-friendly tours are available?
All tours are designed with families in mind, ensuring a safe, comfortable, and enjoyable experience for all age groups. Whether traveling with children or elderly family members, the tours are structured to accommodate the needs of everyone in the group.
Specific tours for senior citizens are also available. To explore them, click here : https://bit.ly/4eWFRoHThe majestic mountains rise against the azure sky, their peaks adorned with glistening snow that sparkles in the sunlight. deep valleys shelter hidden waterfalls, where crystal-clear waters cascade gracefully over rocks, creating a tranquil sound reverberating through the lush landscape. Wildlife thrives here, and one may spot elusive deer grazing in the early morning mist. As dusk settles, the horizon transforms into a canvas of vibrant hues, painting a breathtaking sunset that captivates the soul. Each season unveils unique beauty, inviting adventurers to explore its wonders.
What are the charges for a private taxi or cab from Prayagraj Airport to the Mela grounds?
Private taxi charges are not fixed
The garden blooms vibrantly with colors and fragrances that attract butterflies and bees. Each petal holds a story from the earth, whispering tales of growth and resilience. Nearby, a small pond reflects the blue sky, while frogs leap joyfully on lily pads, creating ripples that dance across the surface. The sound of rustling leaves accompanies the gentle breeze, making nature's symphony a soothing backdrop for all who pause and appreciate this serene setting. As the sun sets, golden hues envelop the scene, inviting evening creatures to awaken under the twilight.
What are the options for traveling to the Kumbh Mela if I arrive late at night at Prayagraj Junction?
If you arrive late at night at Prayagraj Junction for the Kumbh Mela, you have majorly 2 options for travel.
1. Taxi/Cabs: You can easily find 24/7 taxi services outside the railway station. Prepaid taxis are the most convenient and safe option.
2. Auto Rickshaws:Auto rickshaws are readily available outside the railway station.The blooming desert blooms with vibrant colors as dusk approaches. Amidst the sands, ancient stories whisper through the wind, recalling journeys of nomads who tread lightly upon the earth. Some dance beneath the starlit skies, celebrating the beauty of freedom and the vastness of their surroundings. The nocturnal creatures awaken, each sound echoing tales of survival and adventure. Beyond the horizon, a tapestry of dreams unfurls, where every grain of sand holds the promise of a new discovery waiting to be unveiled.
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16gradient_accumulation_steps
: 2learning_rate
: 1e-05weight_decay
: 0.01num_train_epochs
: 90warmup_ratio
: 0.1load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 90max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | val_evaluator_cosine_map@100 |
---|---|---|---|---|
0.5556 | 10 | 0.9623 | 0.5803 | 0.7676 |
1.1111 | 20 | 0.8653 | 0.5278 | 0.7684 |
1.6667 | 30 | 0.9346 | 0.4556 | 0.7692 |
2.2222 | 40 | 0.8058 | 0.3928 | 0.7687 |
2.7778 | 50 | 0.6639 | 0.3282 | 0.7723 |
3.3333 | 60 | 0.4974 | 0.2657 | 0.7784 |
3.8889 | 70 | 0.4447 | 0.2130 | 0.7877 |
4.4444 | 80 | 0.4309 | 0.1753 | 0.7922 |
5.0 | 90 | 0.2755 | 0.1320 | 0.7951 |
5.5556 | 100 | 0.3105 | 0.0826 | 0.8029 |
6.1111 | 110 | 0.1539 | 0.0479 | 0.8106 |
6.6667 | 120 | 0.22 | 0.0312 | 0.8141 |
7.2222 | 130 | 0.235 | 0.0173 | 0.8245 |
7.7778 | 140 | 0.1517 | 0.0119 | 0.8257 |
8.3333 | 150 | 0.1328 | 0.0095 | 0.8311 |
8.8889 | 160 | 0.1175 | 0.0055 | 0.8319 |
9.4444 | 170 | 0.1178 | 0.0037 | 0.8308 |
10.0 | 180 | 0.0598 | 0.0034 | 0.8338 |
10.5556 | 190 | 0.0958 | 0.0030 | 0.8324 |
11.1111 | 200 | 0.0681 | 0.0019 | 0.8331 |
11.6667 | 210 | 0.069 | 0.0013 | 0.8406 |
12.2222 | 220 | 0.0327 | 0.0009 | 0.8522 |
12.7778 | 230 | 0.0833 | 0.0006 | 0.8589 |
13.3333 | 240 | 0.0806 | 0.0005 | 0.8596 |
13.8889 | 250 | 0.0714 | 0.0004 | 0.8658 |
14.4444 | 260 | 0.0813 | 0.0004 | 0.8659 |
15.0 | 270 | 0.0512 | 0.0003 | 0.8676 |
15.5556 | 280 | 0.043 | 0.0003 | 0.8677 |
16.1111 | 290 | 0.0526 | 0.0003 | 0.8677 |
16.6667 | 300 | 0.0291 | 0.0002 | 0.8651 |
17.2222 | 310 | 0.0487 | 0.0002 | 0.8662 |
17.7778 | 320 | 0.054 | 0.0002 | 0.8621 |
18.3333 | 330 | 0.067 | 0.0002 | 0.8652 |
18.8889 | 340 | 0.0415 | 0.0002 | 0.8652 |
19.4444 | 350 | 0.0484 | 0.0002 | 0.8652 |
20.0 | 360 | 0.0304 | 0.0002 | 0.8690 |
20.5556 | 370 | 0.025 | 0.0002 | 0.8697 |
21.1111 | 380 | 0.0549 | 0.0002 | 0.8697 |
21.6667 | 390 | 0.0375 | 0.0002 | 0.8736 |
22.2222 | 400 | 0.0293 | 0.0002 | 0.8749 |
22.7778 | 410 | 0.0558 | 0.0002 | 0.8728 |
23.3333 | 420 | 0.0458 | 0.0002 | 0.8730 |
23.8889 | 430 | 0.0235 | 0.0002 | 0.8730 |
24.4444 | 440 | 0.0515 | 0.0002 | 0.8730 |
25.0 | 450 | 0.0337 | 0.0002 | 0.8734 |
25.5556 | 460 | 0.0376 | 0.0002 | 0.8734 |
26.1111 | 470 | 0.0189 | 0.0003 | 0.8734 |
26.6667 | 480 | 0.032 | 0.0002 | 0.8734 |
27.2222 | 490 | 0.025 | 0.0002 | 0.8695 |
27.7778 | 500 | 0.0258 | 0.0002 | 0.8704 |
28.3333 | 510 | 0.0351 | 0.0002 | 0.8681 |
28.8889 | 520 | 0.0285 | 0.0002 | 0.8679 |
29.4444 | 530 | 0.0263 | 0.0002 | 0.8679 |
30.0 | 540 | 0.0901 | 0.0002 | 0.8679 |
30.5556 | 550 | 0.0323 | 0.0001 | 0.8686 |
31.1111 | 560 | 0.0406 | 0.0001 | 0.8728 |
31.6667 | 570 | 0.0302 | 0.0001 | 0.8712 |
32.2222 | 580 | 0.0195 | 0.0001 | 0.8718 |
32.7778 | 590 | 0.0665 | 0.0001 | 0.8718 |
33.3333 | 600 | 0.0153 | 0.0001 | 0.8728 |
33.8889 | 610 | 0.0378 | 0.0001 | 0.8728 |
34.4444 | 620 | 0.0369 | 0.0001 | 0.8763 |
35.0 | 630 | 0.0238 | 0.0001 | 0.8706 |
35.5556 | 640 | 0.0275 | 0.0001 | 0.8720 |
36.1111 | 650 | 0.0469 | 0.0001 | 0.8708 |
36.6667 | 660 | 0.0438 | 0.0001 | 0.8788 |
37.2222 | 670 | 0.0333 | 0.0001 | 0.8800 |
37.7778 | 680 | 0.0186 | 0.0001 | 0.8765 |
38.3333 | 690 | 0.0308 | 0.0001 | 0.8765 |
38.8889 | 700 | 0.0713 | 0.0001 | 0.8767 |
39.4444 | 710 | 0.0188 | 0.0001 | 0.8767 |
40.0 | 720 | 0.0205 | 0.0001 | 0.8767 |
40.5556 | 730 | 0.0261 | 0.0001 | 0.8767 |
41.1111 | 740 | 0.0193 | 0.0001 | 0.8755 |
41.6667 | 750 | 0.0367 | 0.0000 | 0.8755 |
42.2222 | 760 | 0.0515 | 0.0000 | 0.8755 |
42.7778 | 770 | 0.0649 | 0.0000 | 0.8844 |
43.3333 | 780 | 0.0333 | 0.0000 | 0.8879 |
43.8889 | 790 | 0.0498 | 0.0000 | 0.8868 |
44.4444 | 800 | 0.0324 | 0.0000 | 0.8832 |
45.0 | 810 | 0.0321 | 0.0000 | 0.8832 |
45.5556 | 820 | 0.0354 | 0.0000 | 0.8832 |
46.1111 | 830 | 0.04 | 0.0000 | 0.8868 |
46.6667 | 840 | 0.0176 | 0.0000 | 0.8868 |
47.2222 | 850 | 0.0297 | 0.0000 | 0.8868 |
47.7778 | 860 | 0.0469 | 0.0000 | 0.8868 |
48.3333 | 870 | 0.025 | 0.0000 | 0.8868 |
48.8889 | 880 | 0.0425 | 0.0000 | 0.8868 |
49.4444 | 890 | 0.0475 | 0.0000 | 0.8868 |
50.0 | 900 | 0.0529 | 0.0000 | 0.8868 |
50.5556 | 910 | 0.0312 | 0.0000 | 0.8868 |
51.1111 | 920 | 0.0385 | 0.0000 | 0.8832 |
51.6667 | 930 | 0.0316 | 0.0000 | 0.8832 |
52.2222 | 940 | 0.0361 | 0.0000 | 0.8832 |
52.7778 | 950 | 0.053 | 0.0000 | 0.8832 |
53.3333 | 960 | 0.0226 | 0.0000 | 0.8868 |
53.8889 | 970 | 0.0781 | 0.0000 | 0.8868 |
54.4444 | 980 | 0.03 | 0.0000 | 0.8868 |
55.0 | 990 | 0.0349 | 0.0000 | 0.8832 |
55.5556 | 1000 | 0.0539 | 0.0000 | 0.8832 |
56.1111 | 1010 | 0.0351 | 0.0000 | 0.8832 |
56.6667 | 1020 | 0.0506 | 0.0000 | 0.8832 |
57.2222 | 1030 | 0.0204 | 0.0000 | 0.8832 |
57.7778 | 1040 | 0.0254 | 0.0000 | 0.8844 |
58.3333 | 1050 | 0.0274 | 0.0000 | 0.8844 |
58.8889 | 1060 | 0.001 | 0.0000 | 0.8844 |
59.4444 | 1070 | 0.049 | 0.0000 | 0.8844 |
60.0 | 1080 | 0.028 | 0.0000 | 0.8844 |
60.5556 | 1090 | 0.0477 | 0.0000 | 0.8844 |
61.1111 | 1100 | 0.0304 | 0.0000 | 0.8844 |
61.6667 | 1110 | 0.0188 | 0.0000 | 0.8844 |
62.2222 | 1120 | 0.0247 | 0.0000 | 0.8879 |
62.7778 | 1130 | 0.0428 | 0.0000 | 0.8879 |
63.3333 | 1140 | 0.0218 | 0.0000 | 0.8879 |
63.8889 | 1150 | 0.0476 | 0.0000 | 0.8868 |
64.4444 | 1160 | 0.021 | 0.0000 | 0.8868 |
65.0 | 1170 | 0.0435 | 0.0000 | 0.8856 |
65.5556 | 1180 | 0.0311 | 0.0000 | 0.8856 |
66.1111 | 1190 | 0.0275 | 0.0000 | 0.8856 |
66.6667 | 1200 | 0.0405 | 0.0000 | 0.8891 |
67.2222 | 1210 | 0.0009 | 0.0000 | 0.8891 |
67.7778 | 1220 | 0.0506 | 0.0000 | 0.8891 |
68.3333 | 1230 | 0.0538 | 0.0000 | 0.8891 |
68.8889 | 1240 | 0.0251 | 0.0000 | 0.8891 |
69.4444 | 1250 | 0.0168 | 0.0000 | 0.8891 |
70.0 | 1260 | 0.0527 | 0.0000 | 0.8903 |
70.5556 | 1270 | 0.0491 | 0.0000 | 0.8903 |
71.1111 | 1280 | 0.0092 | 0.0000 | 0.8903 |
71.6667 | 1290 | 0.0257 | 0.0000 | 0.8903 |
72.2222 | 1300 | 0.0455 | 0.0 | 0.8903 |
72.7778 | 1310 | 0.0271 | 0.0000 | 0.8903 |
73.3333 | 1320 | 0.04 | 0.0000 | 0.8903 |
73.8889 | 1330 | 0.0171 | 0.0000 | 0.8903 |
74.4444 | 1340 | 0.0157 | 0.0000 | 0.8903 |
75.0 | 1350 | 0.0323 | 0.0000 | 0.8903 |
75.5556 | 1360 | 0.0372 | 0.0000 | 0.8903 |
76.1111 | 1370 | 0.0109 | 0.0000 | 0.8903 |
76.6667 | 1380 | 0.0358 | 0.0000 | 0.8903 |
77.2222 | 1390 | 0.0279 | 0.0000 | 0.8903 |
77.7778 | 1400 | 0.0173 | 0.0000 | 0.8903 |
78.3333 | 1410 | 0.0409 | 0.0000 | 0.8903 |
78.8889 | 1420 | 0.0139 | 0.0000 | 0.8903 |
79.4444 | 1430 | 0.0123 | 0.0000 | 0.8903 |
80.0 | 1440 | 0.0232 | 0.0000 | 0.8903 |
80.5556 | 1450 | 0.0145 | 0.0000 | 0.8903 |
81.1111 | 1460 | 0.0261 | 0.0000 | 0.8903 |
81.6667 | 1470 | 0.0137 | 0.0000 | 0.8903 |
82.2222 | 1480 | 0.0146 | 0.0000 | 0.8903 |
82.7778 | 1490 | 0.0096 | 0.0000 | 0.8903 |
83.3333 | 1500 | 0.0245 | 0.0000 | 0.8903 |
83.8889 | 1510 | 0.0312 | 0.0000 | 0.8903 |
84.4444 | 1520 | 0.0174 | 0.0000 | 0.8903 |
85.0 | 1530 | 0.0437 | 0.0000 | 0.8903 |
85.5556 | 1540 | 0.0301 | 0.0000 | 0.8903 |
86.1111 | 1550 | 0.0119 | 0.0000 | 0.8903 |
86.6667 | 1560 | 0.0554 | 0.0000 | 0.8903 |
87.2222 | 1570 | 0.021 | 0.0000 | 0.8903 |
87.7778 | 1580 | 0.029 | 0.0000 | 0.8903 |
88.3333 | 1590 | 0.0132 | 0.0000 | 0.8903 |
88.8889 | 1600 | 0.0339 | 0.0000 | 0.8903 |
89.4444 | 1610 | 0.0412 | 0.0000 | 0.8903 |
90.0 | 1620 | 0.0847 | 0.0000 | 0.8903 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for himanshu23099/bge_embedding_finetune_v3
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on val evaluatorself-reported0.816
- Cosine Accuracy@5 on val evaluatorself-reported0.993
- Cosine Accuracy@10 on val evaluatorself-reported1.000
- Cosine Precision@1 on val evaluatorself-reported0.816
- Cosine Precision@5 on val evaluatorself-reported0.199
- Cosine Precision@10 on val evaluatorself-reported0.100
- Cosine Recall@1 on val evaluatorself-reported0.816
- Cosine Recall@5 on val evaluatorself-reported0.993
- Cosine Recall@10 on val evaluatorself-reported1.000
- Cosine Ndcg@5 on val evaluatorself-reported0.915