himanshu23099 commited on
Commit
47045ec
1 Parent(s): c60330c

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,837 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@5
7
+ - cosine_accuracy@10
8
+ - cosine_precision@1
9
+ - cosine_precision@5
10
+ - cosine_precision@10
11
+ - cosine_recall@1
12
+ - cosine_recall@5
13
+ - cosine_recall@10
14
+ - cosine_ndcg@5
15
+ - cosine_ndcg@10
16
+ - cosine_ndcg@100
17
+ - cosine_mrr@5
18
+ - cosine_mrr@10
19
+ - cosine_mrr@100
20
+ - cosine_map@100
21
+ - dot_accuracy@1
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@5
26
+ - dot_precision@10
27
+ - dot_recall@1
28
+ - dot_recall@5
29
+ - dot_recall@10
30
+ - dot_ndcg@5
31
+ - dot_ndcg@10
32
+ - dot_ndcg@100
33
+ - dot_mrr@5
34
+ - dot_mrr@10
35
+ - dot_mrr@100
36
+ - dot_map@100
37
+ pipeline_tag: sentence-similarity
38
+ tags:
39
+ - sentence-transformers
40
+ - sentence-similarity
41
+ - feature-extraction
42
+ - generated_from_trainer
43
+ - dataset_size:563
44
+ - loss:GISTEmbedLoss
45
+ widget:
46
+ - source_sentence: Can I pay for parking using digital payment methods like UPI, credit/debit
47
+ cards, or mobile wallets?
48
+ sentences:
49
+ - The vibrant colors of autumn leaves create a breathtaking tapestry across the
50
+ landscape, reminding us of nature's artistry. Many people enjoy taking strolls
51
+ through parks to appreciate the crisp air and the sound of crunching leaves underfoot.
52
+ Some choose to photograph the scenery, capturing fleeting moments of beauty, while
53
+ others might indulge in seasonal treats like pumpkin spice lattes. Embracing the
54
+ change in seasons also encourages us to reflect on personal growth and the passage
55
+ of time as we move towards the winter months.
56
+ - Yes, most parking areas accept digital payment methods such as UPI, credit/debit
57
+ cards, or mobile wallets to facilitate cashless transactions. However, it is recommended
58
+ to carry some cash as a backup because digital payments might not always work
59
+ due to network issues and high crowd density during peak times.
60
+ - Mahakumbh 2025 will start on 13 January with the Paush Purnima bath and end on
61
+ 26 February with the Mahashivratri bath.
62
+ - source_sentence: What is Aarti
63
+ sentences:
64
+ - No, shuttle buses will not have dedicated volunteers specifically, but for assistance,
65
+ you can reach out to the nearest information center.
66
+ - "In India, since ancient times, rivers are worshipped due to their importance\
67
+ \ to the human life. \n\nLikewise, in Tirathraj Prayagraj, Aartis’ are performed\
68
+ \ on the banks of Ganga, Yamuna and at Sangam with great admiration, deep-rooted\
69
+ \ honor and devotion. In Prayagraj, Prayagraj Mela Authority and various other\
70
+ \ communities make grand arrangements for these Aartis.\n\nThe Aartis are performed\
71
+ \ in the mornings and evenings, in which priests (Batuks), normally 5 to 7 in\
72
+ \ number, chant hymns with great fervor, holding meticulously designed lamps and\
73
+ \ worship the rivers with utmost devotion. \n\nThe lamps held by the batuks represent\
74
+ \ the importance of panchtatva. On one hand, flames of the lamps signify bowing\
75
+ \ to the waters of the sacred rivers and on the other, the holy fumes emanating\
76
+ \ from the lamps appear to play the mystic of heaven on earth."
77
+ - 'In the realm of celestial bodies, the moons of Jupiter captivate astronomers
78
+ with their striking variations. These natural satellites exhibit a diverse range
79
+ of landscapes, from the icy crust of Europa to the volcanic surface of Io, each
80
+ revealing secrets about the formation of our solar system.
81
+
82
+
83
+ In laboratories around the world, researchers utilize advanced telescopes, funded
84
+ by international space agencies, to monitor these moons, collecting data that
85
+ aids in understanding their geological processes. They examine topographical maps
86
+ and analyze spectrographs, revealing rich insights into the chemical compositions
87
+ present on these distant worlds.
88
+
89
+
90
+ Collaborations between scientists and institutions have led to remarkable discoveries,
91
+ including the potential for subsurface oceans beneath the icy shell of Europa,
92
+ stirring excitement about the possibility of extraterrestrial life. Meanwhile,
93
+ rumors of missions planned to explore these enigmatic moons intensify interest
94
+ in the ongoing quest for knowledge beyond our home planet.'
95
+ - source_sentence: Which all companies offer tour services?
96
+ sentences:
97
+ - There are no specific facilities exclusively for senior citizens at the Railway
98
+ Junction in relation to the Mela. However, most railway stations generally offer
99
+ basic amenities like wheelchairs, assistance for boarding and de-boarding, and
100
+ special seating areas for senior citizens or those with mobility issues. It is
101
+ advisable for senior citizens to check with the railway authorities for any additional
102
+ support that might be available during the Mela.
103
+ - The art of origami has captivated many enthusiasts around the world. Crafting
104
+ intricate designs from simple sheets of paper showcases creativity and precision.
105
+ Essential tools include sharp scissors, bone folders, and high-quality paper to
106
+ achieve the best results. Workshops often focus on advanced techniques, leading
107
+ to beautiful decorative pieces and useful items, enhancing the enjoyment of this
108
+ timeless craft.
109
+ - All information provided here includes tour services provided by UPSTDC (Uttar
110
+ Pradesh State Tourism Development Corporation). Additionally, popular platforms
111
+ like MakeMyTrip and other travel websites offer their own tour packages for Kumbh
112
+ Mela and nearby attractions. For a wider range of options, you can check these
113
+ services directly on their websites to find a tour that best suits your needs.
114
+ - source_sentence: From when to when is the Mela?
115
+ sentences:
116
+ - "Mahakumbh Mela 2025 will begin on 13 January with the Paush Purnima bath and\
117
+ \ will conclude on 26 February with the Mahashivratri bath.\n \n While every day\
118
+ \ during the Mahakumbh is considered auspicious for bathing, the main bathing\
119
+ \ festivals are as follows:\n \n 1. Paush Purnima – 13 January\n 2. Makar Sankranti\
120
+ \ – 14 January\n 3. Mauni Amavasya – 29 January\n 4. Vasant Panchami – 3 February\n\
121
+ \ 5. Maghi Purnima – 12 February\n 6. Mahashivratri – 26 February\n \n Out of\
122
+ \ these, three dates are Shahi Snan festivals, when the Akharas and saints proceed\
123
+ \ with grand processions for the bath:\n \n 1. Makar Sankranti – 14 January\n\
124
+ \ 2. Mauni Amavasya – 29 January\n 3. Vasant Panchami – 3 February"
125
+ - 'The sky today is filled with vibrant clouds, where shades of orange and pink
126
+ blend seamlessly into vast expanses of blue. The wind carries the sounds of distant
127
+ laughter, as children chase each other through sprawling fields of lush green
128
+ grass. Nearby, an old oak tree stands tall, its branches swaying gently and offering
129
+ shade to those seeking respite from the warmth of the sun.
130
+
131
+
132
+ A stream meanders through the landscape, its clear waters reflecting the brilliant
133
+ hues of the sky above. Dragonflies dart about, their iridescent wings catching
134
+ the light as they flit from flower to flower. In the distance, a family prepares
135
+ a picnic, the aroma of freshly baked bread mingling with the sweet scent of blooming
136
+ wildflowers.
137
+
138
+
139
+ As the afternoon stretches on, the sun begins its slow descent, painting the horizon
140
+ in richer tones. The air is filled with a sense of peace and joy, moments warm
141
+ with the laughter of friends and the thrill of nature''s beauty all around.'
142
+ - No, there is no special bus service specifically for women or families traveling
143
+ from the Bus Stand to the Mela. Shuttle buses would be available with fixed timings
144
+ and route plans which offer convenient travel
145
+ - source_sentence: What is the ritual of Snan or bathing?
146
+ sentences:
147
+ - Yes, luggage porter services are available at Prayagraj Junction for pilgrims
148
+ heading to the Mela. These porters, often referred to as coolies
149
+ - 'Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during
150
+ Mahakumbh has special significance. It is believed that by bathing in this holy
151
+ confluence, all the sins of a person are washed away and he attains salvation.
152
+
153
+
154
+ Bathing not only symbolizes personal purification, but it also conveys the message
155
+ of social harmony and unity, where people from different cultures and communities
156
+ come together to participate in this sacred ritual.
157
+
158
+
159
+ It is considered that in special circumstances, the water of rivers also acquires
160
+ a special life-giving quality, i.e. nectar, which not only leads to spiritual
161
+ development along with purification of the mind, but also gives physical benefits
162
+ by getting health.'
163
+ - 'The art of knitting is a fascinating hobby that allows individuals to create
164
+ beautiful and functional pieces from yarn. By intertwining strands of wool or
165
+ cotton, one can produce items ranging from scarves to intricate sweaters. This
166
+ craft has been passed down through generations, often bringing family members
167
+ together for cozy evenings filled with creativity and conversation.
168
+
169
+
170
+ Knitting not only provides a sense of accomplishment with every completed project
171
+ but also promotes focus and relaxation, making it an excellent activity for reducing
172
+ stress. Furthermore, the choice of colors and patterns can result in vibrant works
173
+ of art, showcasing the unique style and personality of the knitter. Engaging in
174
+ this craft often leads to new friendships within community groups that gather
175
+ to share techniques and ideas, fostering a sense of belonging among enthusiasts.'
176
+ model-index:
177
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
178
+ results:
179
+ - task:
180
+ type: information-retrieval
181
+ name: Information Retrieval
182
+ dataset:
183
+ name: val evaluator
184
+ type: val_evaluator
185
+ metrics:
186
+ - type: cosine_accuracy@1
187
+ value: 0.8156028368794326
188
+ name: Cosine Accuracy@1
189
+ - type: cosine_accuracy@5
190
+ value: 0.9929078014184397
191
+ name: Cosine Accuracy@5
192
+ - type: cosine_accuracy@10
193
+ value: 1.0
194
+ name: Cosine Accuracy@10
195
+ - type: cosine_precision@1
196
+ value: 0.8156028368794326
197
+ name: Cosine Precision@1
198
+ - type: cosine_precision@5
199
+ value: 0.1985815602836879
200
+ name: Cosine Precision@5
201
+ - type: cosine_precision@10
202
+ value: 0.09999999999999999
203
+ name: Cosine Precision@10
204
+ - type: cosine_recall@1
205
+ value: 0.8156028368794326
206
+ name: Cosine Recall@1
207
+ - type: cosine_recall@5
208
+ value: 0.9929078014184397
209
+ name: Cosine Recall@5
210
+ - type: cosine_recall@10
211
+ value: 1.0
212
+ name: Cosine Recall@10
213
+ - type: cosine_ndcg@5
214
+ value: 0.9154696629317853
215
+ name: Cosine Ndcg@5
216
+ - type: cosine_ndcg@10
217
+ value: 0.9179959550389344
218
+ name: Cosine Ndcg@10
219
+ - type: cosine_ndcg@100
220
+ value: 0.9179959550389344
221
+ name: Cosine Ndcg@100
222
+ - type: cosine_mrr@5
223
+ value: 0.8891252955082741
224
+ name: Cosine Mrr@5
225
+ - type: cosine_mrr@10
226
+ value: 0.8903073286052008
227
+ name: Cosine Mrr@10
228
+ - type: cosine_mrr@100
229
+ value: 0.8903073286052008
230
+ name: Cosine Mrr@100
231
+ - type: cosine_map@100
232
+ value: 0.8903073286052009
233
+ name: Cosine Map@100
234
+ - type: dot_accuracy@1
235
+ value: 0.8156028368794326
236
+ name: Dot Accuracy@1
237
+ - type: dot_accuracy@5
238
+ value: 0.9929078014184397
239
+ name: Dot Accuracy@5
240
+ - type: dot_accuracy@10
241
+ value: 1.0
242
+ name: Dot Accuracy@10
243
+ - type: dot_precision@1
244
+ value: 0.8156028368794326
245
+ name: Dot Precision@1
246
+ - type: dot_precision@5
247
+ value: 0.1985815602836879
248
+ name: Dot Precision@5
249
+ - type: dot_precision@10
250
+ value: 0.09999999999999999
251
+ name: Dot Precision@10
252
+ - type: dot_recall@1
253
+ value: 0.8156028368794326
254
+ name: Dot Recall@1
255
+ - type: dot_recall@5
256
+ value: 0.9929078014184397
257
+ name: Dot Recall@5
258
+ - type: dot_recall@10
259
+ value: 1.0
260
+ name: Dot Recall@10
261
+ - type: dot_ndcg@5
262
+ value: 0.9154696629317853
263
+ name: Dot Ndcg@5
264
+ - type: dot_ndcg@10
265
+ value: 0.9179959550389344
266
+ name: Dot Ndcg@10
267
+ - type: dot_ndcg@100
268
+ value: 0.9179959550389344
269
+ name: Dot Ndcg@100
270
+ - type: dot_mrr@5
271
+ value: 0.8891252955082741
272
+ name: Dot Mrr@5
273
+ - type: dot_mrr@10
274
+ value: 0.8903073286052008
275
+ name: Dot Mrr@10
276
+ - type: dot_mrr@100
277
+ value: 0.8903073286052008
278
+ name: Dot Mrr@100
279
+ - type: dot_map@100
280
+ value: 0.8903073286052009
281
+ name: Dot Map@100
282
+ ---
283
+
284
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
285
+
286
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
287
+
288
+ ## Model Details
289
+
290
+ ### Model Description
291
+ - **Model Type:** Sentence Transformer
292
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
293
+ - **Maximum Sequence Length:** 512 tokens
294
+ - **Output Dimensionality:** 384 tokens
295
+ - **Similarity Function:** Cosine Similarity
296
+ <!-- - **Training Dataset:** Unknown -->
297
+ <!-- - **Language:** Unknown -->
298
+ <!-- - **License:** Unknown -->
299
+
300
+ ### Model Sources
301
+
302
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
303
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
304
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
305
+
306
+ ### Full Model Architecture
307
+
308
+ ```
309
+ SentenceTransformer(
310
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
311
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
312
+ (2): Normalize()
313
+ )
314
+ ```
315
+
316
+ ## Usage
317
+
318
+ ### Direct Usage (Sentence Transformers)
319
+
320
+ First install the Sentence Transformers library:
321
+
322
+ ```bash
323
+ pip install -U sentence-transformers
324
+ ```
325
+
326
+ Then you can load this model and run inference.
327
+ ```python
328
+ from sentence_transformers import SentenceTransformer
329
+
330
+ # Download from the 🤗 Hub
331
+ model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v3")
332
+ # Run inference
333
+ sentences = [
334
+ 'What is the ritual of Snan or bathing?',
335
+ 'Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during Mahakumbh has special significance. It is believed that by bathing in this holy confluence, all the sins of a person are washed away and he attains salvation.\n\nBathing not only symbolizes personal purification, but it also conveys the message of social harmony and unity, where people from different cultures and communities come together to participate in this sacred ritual.\n\nIt is considered that in special circumstances, the water of rivers also acquires a special life-giving quality, i.e. nectar, which not only leads to spiritual development along with purification of the mind, but also gives physical benefits by getting health.',
336
+ 'The art of knitting is a fascinating hobby that allows individuals to create beautiful and functional pieces from yarn. By intertwining strands of wool or cotton, one can produce items ranging from scarves to intricate sweaters. This craft has been passed down through generations, often bringing family members together for cozy evenings filled with creativity and conversation.\n\nKnitting not only provides a sense of accomplishment with every completed project but also promotes focus and relaxation, making it an excellent activity for reducing stress. Furthermore, the choice of colors and patterns can result in vibrant works of art, showcasing the unique style and personality of the knitter. Engaging in this craft often leads to new friendships within community groups that gather to share techniques and ideas, fostering a sense of belonging among enthusiasts.',
337
+ ]
338
+ embeddings = model.encode(sentences)
339
+ print(embeddings.shape)
340
+ # [3, 384]
341
+
342
+ # Get the similarity scores for the embeddings
343
+ similarities = model.similarity(embeddings, embeddings)
344
+ print(similarities.shape)
345
+ # [3, 3]
346
+ ```
347
+
348
+ <!--
349
+ ### Direct Usage (Transformers)
350
+
351
+ <details><summary>Click to see the direct usage in Transformers</summary>
352
+
353
+ </details>
354
+ -->
355
+
356
+ <!--
357
+ ### Downstream Usage (Sentence Transformers)
358
+
359
+ You can finetune this model on your own dataset.
360
+
361
+ <details><summary>Click to expand</summary>
362
+
363
+ </details>
364
+ -->
365
+
366
+ <!--
367
+ ### Out-of-Scope Use
368
+
369
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
370
+ -->
371
+
372
+ ## Evaluation
373
+
374
+ ### Metrics
375
+
376
+ #### Information Retrieval
377
+ * Dataset: `val_evaluator`
378
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
379
+
380
+ | Metric | Value |
381
+ |:--------------------|:-----------|
382
+ | cosine_accuracy@1 | 0.8156 |
383
+ | cosine_accuracy@5 | 0.9929 |
384
+ | cosine_accuracy@10 | 1.0 |
385
+ | cosine_precision@1 | 0.8156 |
386
+ | cosine_precision@5 | 0.1986 |
387
+ | cosine_precision@10 | 0.1 |
388
+ | cosine_recall@1 | 0.8156 |
389
+ | cosine_recall@5 | 0.9929 |
390
+ | cosine_recall@10 | 1.0 |
391
+ | cosine_ndcg@5 | 0.9155 |
392
+ | cosine_ndcg@10 | 0.918 |
393
+ | cosine_ndcg@100 | 0.918 |
394
+ | cosine_mrr@5 | 0.8891 |
395
+ | cosine_mrr@10 | 0.8903 |
396
+ | cosine_mrr@100 | 0.8903 |
397
+ | **cosine_map@100** | **0.8903** |
398
+ | dot_accuracy@1 | 0.8156 |
399
+ | dot_accuracy@5 | 0.9929 |
400
+ | dot_accuracy@10 | 1.0 |
401
+ | dot_precision@1 | 0.8156 |
402
+ | dot_precision@5 | 0.1986 |
403
+ | dot_precision@10 | 0.1 |
404
+ | dot_recall@1 | 0.8156 |
405
+ | dot_recall@5 | 0.9929 |
406
+ | dot_recall@10 | 1.0 |
407
+ | dot_ndcg@5 | 0.9155 |
408
+ | dot_ndcg@10 | 0.918 |
409
+ | dot_ndcg@100 | 0.918 |
410
+ | dot_mrr@5 | 0.8891 |
411
+ | dot_mrr@10 | 0.8903 |
412
+ | dot_mrr@100 | 0.8903 |
413
+ | dot_map@100 | 0.8903 |
414
+
415
+ <!--
416
+ ## Bias, Risks and Limitations
417
+
418
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
419
+ -->
420
+
421
+ <!--
422
+ ### Recommendations
423
+
424
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
425
+ -->
426
+
427
+ ## Training Details
428
+
429
+ ### Training Dataset
430
+
431
+ #### Unnamed Dataset
432
+
433
+
434
+ * Size: 563 training samples
435
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
436
+ * Approximate statistics based on the first 563 samples:
437
+ | | anchor | positive | negative |
438
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
439
+ | type | string | string | string |
440
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.33 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 93.51 tokens</li><li>max: 402 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 109.62 tokens</li><li>max: 269 tokens</li></ul> |
441
+ * Samples:
442
+ | anchor | positive | negative |
443
+ |:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
444
+ | <code>Are there attached bathrooms in tents?</code> | <code>Attached bathroom facilities in tents vary by vendor and tent type. To know more about the availability of attached bathrooms, please reach out to your chosen Tent City vendor. For more information about these vendors and their services, please click here</code> | <code>The colors of the rainbow blend seamlessly across the canvas of the sky, creating a stunning visual display. Enjoying the beauty of nature can greatly enhance one's mood and inspire creativity. Take a moment to appreciate the vibrant hues and how they interact, as this can lead to a greater understanding of art and light. Exploring different forms of expression allows for personal growth and emotional exploration.</code> |
445
+ | <code>Are there any discounts for senior citizens or children on buses traveling from the Bus Stand to the Mela?</code> | <code>No, there are no specific discounts available for senior citizens or children on buses traveling from the Bus Stand to the Mela. Standard ticket prices generally apply to all passengers.</code> | <code>The vibrant colors of autumn leaves create a breathtaking scene as they cascade gently to the ground. Local parks become havens for photographers and nature enthusiasts alike, capturing the fleeting beauty of the season. Crisp air invigorates leisurely strolls, while children gather acorns and pinecones, crafting treasures from nature’s bounty.</code> |
446
+ | <code>Are there any luggage porter services available at Prayagraj Junction for pilgrims heading to the Mela?</code> | <code>Yes, luggage porter services are available at Prayagraj Junction for pilgrims heading to the Mela. These porters, often referred to as coolies</code> | <code> can be hired directly at the station to assist with carrying luggage from the train platform to your onward transport or directly to the Mela area.</code> |
447
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
448
+ ```json
449
+ {'guide': SentenceTransformer(
450
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
451
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
452
+ (2): Normalize()
453
+ ), 'temperature': 0.01}
454
+ ```
455
+
456
+ ### Evaluation Dataset
457
+
458
+ #### Unnamed Dataset
459
+
460
+
461
+ * Size: 141 evaluation samples
462
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
463
+ * Approximate statistics based on the first 141 samples:
464
+ | | anchor | positive | negative |
465
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
466
+ | type | string | string | string |
467
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 88.91 tokens</li><li>max: 324 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 104.84 tokens</li><li>max: 262 tokens</li></ul> |
468
+ * Samples:
469
+ | anchor | positive | negative |
470
+ |:-------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
471
+ | <code>What family-friendly tours are available?</code> | <code>All tours are designed with families in mind, ensuring a safe, comfortable, and enjoyable experience for all age groups. Whether traveling with children or elderly family members, the tours are structured to accommodate the needs of everyone in the group.<br><br>Specific tours for senior citizens are also available. To explore them, click here : https://bit.ly/4eWFRoH</code> | <code>The majestic mountains rise against the azure sky, their peaks adorned with glistening snow that sparkles in the sunlight. deep valleys shelter hidden waterfalls, where crystal-clear waters cascade gracefully over rocks, creating a tranquil sound reverberating through the lush landscape. Wildlife thrives here, and one may spot elusive deer grazing in the early morning mist. As dusk settles, the horizon transforms into a canvas of vibrant hues, painting a breathtaking sunset that captivates the soul. Each season unveils unique beauty, inviting adventurers to explore its wonders.</code> |
472
+ | <code>What are the charges for a private taxi or cab from Prayagraj Airport to the Mela grounds?</code> | <code>Private taxi charges are not fixed</code> | <code>The garden blooms vibrantly with colors and fragrances that attract butterflies and bees. Each petal holds a story from the earth, whispering tales of growth and resilience. Nearby, a small pond reflects the blue sky, while frogs leap joyfully on lily pads, creating ripples that dance across the surface. The sound of rustling leaves accompanies the gentle breeze, making nature's symphony a soothing backdrop for all who pause and appreciate this serene setting. As the sun sets, golden hues envelop the scene, inviting evening creatures to awaken under the twilight.</code> |
473
+ | <code>What are the options for traveling to the Kumbh Mela if I arrive late at night at Prayagraj Junction?</code> | <code>If you arrive late at night at Prayagraj Junction for the Kumbh Mela, you have majorly 2 options for travel. <br><br>1. Taxi/Cabs: You can easily find 24/7 taxi services outside the railway station. Prepaid taxis are the most convenient and safe option.<br><br>2. Auto Rickshaws:Auto rickshaws are readily available outside the railway station.</code> | <code>The blooming desert blooms with vibrant colors as dusk approaches. Amidst the sands, ancient stories whisper through the wind, recalling journeys of nomads who tread lightly upon the earth. Some dance beneath the starlit skies, celebrating the beauty of freedom and the vastness of their surroundings. The nocturnal creatures awaken, each sound echoing tales of survival and adventure. Beyond the horizon, a tapestry of dreams unfurls, where every grain of sand holds the promise of a new discovery waiting to be unveiled.</code> |
474
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
475
+ ```json
476
+ {'guide': SentenceTransformer(
477
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
478
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
479
+ (2): Normalize()
480
+ ), 'temperature': 0.01}
481
+ ```
482
+
483
+ ### Training Hyperparameters
484
+ #### Non-Default Hyperparameters
485
+
486
+ - `eval_strategy`: steps
487
+ - `per_device_train_batch_size`: 16
488
+ - `gradient_accumulation_steps`: 2
489
+ - `learning_rate`: 1e-05
490
+ - `weight_decay`: 0.01
491
+ - `num_train_epochs`: 90
492
+ - `warmup_ratio`: 0.1
493
+ - `load_best_model_at_end`: True
494
+
495
+ #### All Hyperparameters
496
+ <details><summary>Click to expand</summary>
497
+
498
+ - `overwrite_output_dir`: False
499
+ - `do_predict`: False
500
+ - `eval_strategy`: steps
501
+ - `prediction_loss_only`: True
502
+ - `per_device_train_batch_size`: 16
503
+ - `per_device_eval_batch_size`: 8
504
+ - `per_gpu_train_batch_size`: None
505
+ - `per_gpu_eval_batch_size`: None
506
+ - `gradient_accumulation_steps`: 2
507
+ - `eval_accumulation_steps`: None
508
+ - `torch_empty_cache_steps`: None
509
+ - `learning_rate`: 1e-05
510
+ - `weight_decay`: 0.01
511
+ - `adam_beta1`: 0.9
512
+ - `adam_beta2`: 0.999
513
+ - `adam_epsilon`: 1e-08
514
+ - `max_grad_norm`: 1.0
515
+ - `num_train_epochs`: 90
516
+ - `max_steps`: -1
517
+ - `lr_scheduler_type`: linear
518
+ - `lr_scheduler_kwargs`: {}
519
+ - `warmup_ratio`: 0.1
520
+ - `warmup_steps`: 0
521
+ - `log_level`: passive
522
+ - `log_level_replica`: warning
523
+ - `log_on_each_node`: True
524
+ - `logging_nan_inf_filter`: True
525
+ - `save_safetensors`: True
526
+ - `save_on_each_node`: False
527
+ - `save_only_model`: False
528
+ - `restore_callback_states_from_checkpoint`: False
529
+ - `no_cuda`: False
530
+ - `use_cpu`: False
531
+ - `use_mps_device`: False
532
+ - `seed`: 42
533
+ - `data_seed`: None
534
+ - `jit_mode_eval`: False
535
+ - `use_ipex`: False
536
+ - `bf16`: False
537
+ - `fp16`: False
538
+ - `fp16_opt_level`: O1
539
+ - `half_precision_backend`: auto
540
+ - `bf16_full_eval`: False
541
+ - `fp16_full_eval`: False
542
+ - `tf32`: None
543
+ - `local_rank`: 0
544
+ - `ddp_backend`: None
545
+ - `tpu_num_cores`: None
546
+ - `tpu_metrics_debug`: False
547
+ - `debug`: []
548
+ - `dataloader_drop_last`: False
549
+ - `dataloader_num_workers`: 0
550
+ - `dataloader_prefetch_factor`: None
551
+ - `past_index`: -1
552
+ - `disable_tqdm`: False
553
+ - `remove_unused_columns`: True
554
+ - `label_names`: None
555
+ - `load_best_model_at_end`: True
556
+ - `ignore_data_skip`: False
557
+ - `fsdp`: []
558
+ - `fsdp_min_num_params`: 0
559
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
560
+ - `fsdp_transformer_layer_cls_to_wrap`: None
561
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
562
+ - `deepspeed`: None
563
+ - `label_smoothing_factor`: 0.0
564
+ - `optim`: adamw_torch
565
+ - `optim_args`: None
566
+ - `adafactor`: False
567
+ - `group_by_length`: False
568
+ - `length_column_name`: length
569
+ - `ddp_find_unused_parameters`: None
570
+ - `ddp_bucket_cap_mb`: None
571
+ - `ddp_broadcast_buffers`: False
572
+ - `dataloader_pin_memory`: True
573
+ - `dataloader_persistent_workers`: False
574
+ - `skip_memory_metrics`: True
575
+ - `use_legacy_prediction_loop`: False
576
+ - `push_to_hub`: False
577
+ - `resume_from_checkpoint`: None
578
+ - `hub_model_id`: None
579
+ - `hub_strategy`: every_save
580
+ - `hub_private_repo`: False
581
+ - `hub_always_push`: False
582
+ - `gradient_checkpointing`: False
583
+ - `gradient_checkpointing_kwargs`: None
584
+ - `include_inputs_for_metrics`: False
585
+ - `eval_do_concat_batches`: True
586
+ - `fp16_backend`: auto
587
+ - `push_to_hub_model_id`: None
588
+ - `push_to_hub_organization`: None
589
+ - `mp_parameters`:
590
+ - `auto_find_batch_size`: False
591
+ - `full_determinism`: False
592
+ - `torchdynamo`: None
593
+ - `ray_scope`: last
594
+ - `ddp_timeout`: 1800
595
+ - `torch_compile`: False
596
+ - `torch_compile_backend`: None
597
+ - `torch_compile_mode`: None
598
+ - `dispatch_batches`: None
599
+ - `split_batches`: None
600
+ - `include_tokens_per_second`: False
601
+ - `include_num_input_tokens_seen`: False
602
+ - `neftune_noise_alpha`: None
603
+ - `optim_target_modules`: None
604
+ - `batch_eval_metrics`: False
605
+ - `eval_on_start`: False
606
+ - `eval_use_gather_object`: False
607
+ - `batch_sampler`: batch_sampler
608
+ - `multi_dataset_batch_sampler`: proportional
609
+
610
+ </details>
611
+
612
+ ### Training Logs
613
+ <details><summary>Click to expand</summary>
614
+
615
+ | Epoch | Step | Training Loss | Validation Loss | val_evaluator_cosine_map@100 |
616
+ |:-----------:|:--------:|:-------------:|:---------------:|:----------------------------:|
617
+ | 0.5556 | 10 | 0.9623 | 0.5803 | 0.7676 |
618
+ | 1.1111 | 20 | 0.8653 | 0.5278 | 0.7684 |
619
+ | 1.6667 | 30 | 0.9346 | 0.4556 | 0.7692 |
620
+ | 2.2222 | 40 | 0.8058 | 0.3928 | 0.7687 |
621
+ | 2.7778 | 50 | 0.6639 | 0.3282 | 0.7723 |
622
+ | 3.3333 | 60 | 0.4974 | 0.2657 | 0.7784 |
623
+ | 3.8889 | 70 | 0.4447 | 0.2130 | 0.7877 |
624
+ | 4.4444 | 80 | 0.4309 | 0.1753 | 0.7922 |
625
+ | 5.0 | 90 | 0.2755 | 0.1320 | 0.7951 |
626
+ | 5.5556 | 100 | 0.3105 | 0.0826 | 0.8029 |
627
+ | 6.1111 | 110 | 0.1539 | 0.0479 | 0.8106 |
628
+ | 6.6667 | 120 | 0.22 | 0.0312 | 0.8141 |
629
+ | 7.2222 | 130 | 0.235 | 0.0173 | 0.8245 |
630
+ | 7.7778 | 140 | 0.1517 | 0.0119 | 0.8257 |
631
+ | 8.3333 | 150 | 0.1328 | 0.0095 | 0.8311 |
632
+ | 8.8889 | 160 | 0.1175 | 0.0055 | 0.8319 |
633
+ | 9.4444 | 170 | 0.1178 | 0.0037 | 0.8308 |
634
+ | 10.0 | 180 | 0.0598 | 0.0034 | 0.8338 |
635
+ | 10.5556 | 190 | 0.0958 | 0.0030 | 0.8324 |
636
+ | 11.1111 | 200 | 0.0681 | 0.0019 | 0.8331 |
637
+ | 11.6667 | 210 | 0.069 | 0.0013 | 0.8406 |
638
+ | 12.2222 | 220 | 0.0327 | 0.0009 | 0.8522 |
639
+ | 12.7778 | 230 | 0.0833 | 0.0006 | 0.8589 |
640
+ | 13.3333 | 240 | 0.0806 | 0.0005 | 0.8596 |
641
+ | 13.8889 | 250 | 0.0714 | 0.0004 | 0.8658 |
642
+ | 14.4444 | 260 | 0.0813 | 0.0004 | 0.8659 |
643
+ | 15.0 | 270 | 0.0512 | 0.0003 | 0.8676 |
644
+ | 15.5556 | 280 | 0.043 | 0.0003 | 0.8677 |
645
+ | 16.1111 | 290 | 0.0526 | 0.0003 | 0.8677 |
646
+ | 16.6667 | 300 | 0.0291 | 0.0002 | 0.8651 |
647
+ | 17.2222 | 310 | 0.0487 | 0.0002 | 0.8662 |
648
+ | 17.7778 | 320 | 0.054 | 0.0002 | 0.8621 |
649
+ | 18.3333 | 330 | 0.067 | 0.0002 | 0.8652 |
650
+ | 18.8889 | 340 | 0.0415 | 0.0002 | 0.8652 |
651
+ | 19.4444 | 350 | 0.0484 | 0.0002 | 0.8652 |
652
+ | 20.0 | 360 | 0.0304 | 0.0002 | 0.8690 |
653
+ | 20.5556 | 370 | 0.025 | 0.0002 | 0.8697 |
654
+ | 21.1111 | 380 | 0.0549 | 0.0002 | 0.8697 |
655
+ | 21.6667 | 390 | 0.0375 | 0.0002 | 0.8736 |
656
+ | 22.2222 | 400 | 0.0293 | 0.0002 | 0.8749 |
657
+ | 22.7778 | 410 | 0.0558 | 0.0002 | 0.8728 |
658
+ | 23.3333 | 420 | 0.0458 | 0.0002 | 0.8730 |
659
+ | 23.8889 | 430 | 0.0235 | 0.0002 | 0.8730 |
660
+ | 24.4444 | 440 | 0.0515 | 0.0002 | 0.8730 |
661
+ | 25.0 | 450 | 0.0337 | 0.0002 | 0.8734 |
662
+ | 25.5556 | 460 | 0.0376 | 0.0002 | 0.8734 |
663
+ | 26.1111 | 470 | 0.0189 | 0.0003 | 0.8734 |
664
+ | 26.6667 | 480 | 0.032 | 0.0002 | 0.8734 |
665
+ | 27.2222 | 490 | 0.025 | 0.0002 | 0.8695 |
666
+ | 27.7778 | 500 | 0.0258 | 0.0002 | 0.8704 |
667
+ | 28.3333 | 510 | 0.0351 | 0.0002 | 0.8681 |
668
+ | 28.8889 | 520 | 0.0285 | 0.0002 | 0.8679 |
669
+ | 29.4444 | 530 | 0.0263 | 0.0002 | 0.8679 |
670
+ | 30.0 | 540 | 0.0901 | 0.0002 | 0.8679 |
671
+ | 30.5556 | 550 | 0.0323 | 0.0001 | 0.8686 |
672
+ | 31.1111 | 560 | 0.0406 | 0.0001 | 0.8728 |
673
+ | 31.6667 | 570 | 0.0302 | 0.0001 | 0.8712 |
674
+ | 32.2222 | 580 | 0.0195 | 0.0001 | 0.8718 |
675
+ | 32.7778 | 590 | 0.0665 | 0.0001 | 0.8718 |
676
+ | 33.3333 | 600 | 0.0153 | 0.0001 | 0.8728 |
677
+ | 33.8889 | 610 | 0.0378 | 0.0001 | 0.8728 |
678
+ | 34.4444 | 620 | 0.0369 | 0.0001 | 0.8763 |
679
+ | 35.0 | 630 | 0.0238 | 0.0001 | 0.8706 |
680
+ | 35.5556 | 640 | 0.0275 | 0.0001 | 0.8720 |
681
+ | 36.1111 | 650 | 0.0469 | 0.0001 | 0.8708 |
682
+ | 36.6667 | 660 | 0.0438 | 0.0001 | 0.8788 |
683
+ | 37.2222 | 670 | 0.0333 | 0.0001 | 0.8800 |
684
+ | 37.7778 | 680 | 0.0186 | 0.0001 | 0.8765 |
685
+ | 38.3333 | 690 | 0.0308 | 0.0001 | 0.8765 |
686
+ | 38.8889 | 700 | 0.0713 | 0.0001 | 0.8767 |
687
+ | 39.4444 | 710 | 0.0188 | 0.0001 | 0.8767 |
688
+ | 40.0 | 720 | 0.0205 | 0.0001 | 0.8767 |
689
+ | 40.5556 | 730 | 0.0261 | 0.0001 | 0.8767 |
690
+ | 41.1111 | 740 | 0.0193 | 0.0001 | 0.8755 |
691
+ | 41.6667 | 750 | 0.0367 | 0.0000 | 0.8755 |
692
+ | 42.2222 | 760 | 0.0515 | 0.0000 | 0.8755 |
693
+ | 42.7778 | 770 | 0.0649 | 0.0000 | 0.8844 |
694
+ | 43.3333 | 780 | 0.0333 | 0.0000 | 0.8879 |
695
+ | 43.8889 | 790 | 0.0498 | 0.0000 | 0.8868 |
696
+ | 44.4444 | 800 | 0.0324 | 0.0000 | 0.8832 |
697
+ | 45.0 | 810 | 0.0321 | 0.0000 | 0.8832 |
698
+ | 45.5556 | 820 | 0.0354 | 0.0000 | 0.8832 |
699
+ | 46.1111 | 830 | 0.04 | 0.0000 | 0.8868 |
700
+ | 46.6667 | 840 | 0.0176 | 0.0000 | 0.8868 |
701
+ | 47.2222 | 850 | 0.0297 | 0.0000 | 0.8868 |
702
+ | 47.7778 | 860 | 0.0469 | 0.0000 | 0.8868 |
703
+ | 48.3333 | 870 | 0.025 | 0.0000 | 0.8868 |
704
+ | 48.8889 | 880 | 0.0425 | 0.0000 | 0.8868 |
705
+ | 49.4444 | 890 | 0.0475 | 0.0000 | 0.8868 |
706
+ | 50.0 | 900 | 0.0529 | 0.0000 | 0.8868 |
707
+ | 50.5556 | 910 | 0.0312 | 0.0000 | 0.8868 |
708
+ | 51.1111 | 920 | 0.0385 | 0.0000 | 0.8832 |
709
+ | 51.6667 | 930 | 0.0316 | 0.0000 | 0.8832 |
710
+ | 52.2222 | 940 | 0.0361 | 0.0000 | 0.8832 |
711
+ | 52.7778 | 950 | 0.053 | 0.0000 | 0.8832 |
712
+ | 53.3333 | 960 | 0.0226 | 0.0000 | 0.8868 |
713
+ | 53.8889 | 970 | 0.0781 | 0.0000 | 0.8868 |
714
+ | 54.4444 | 980 | 0.03 | 0.0000 | 0.8868 |
715
+ | 55.0 | 990 | 0.0349 | 0.0000 | 0.8832 |
716
+ | 55.5556 | 1000 | 0.0539 | 0.0000 | 0.8832 |
717
+ | 56.1111 | 1010 | 0.0351 | 0.0000 | 0.8832 |
718
+ | 56.6667 | 1020 | 0.0506 | 0.0000 | 0.8832 |
719
+ | 57.2222 | 1030 | 0.0204 | 0.0000 | 0.8832 |
720
+ | 57.7778 | 1040 | 0.0254 | 0.0000 | 0.8844 |
721
+ | 58.3333 | 1050 | 0.0274 | 0.0000 | 0.8844 |
722
+ | 58.8889 | 1060 | 0.001 | 0.0000 | 0.8844 |
723
+ | 59.4444 | 1070 | 0.049 | 0.0000 | 0.8844 |
724
+ | 60.0 | 1080 | 0.028 | 0.0000 | 0.8844 |
725
+ | 60.5556 | 1090 | 0.0477 | 0.0000 | 0.8844 |
726
+ | 61.1111 | 1100 | 0.0304 | 0.0000 | 0.8844 |
727
+ | 61.6667 | 1110 | 0.0188 | 0.0000 | 0.8844 |
728
+ | 62.2222 | 1120 | 0.0247 | 0.0000 | 0.8879 |
729
+ | 62.7778 | 1130 | 0.0428 | 0.0000 | 0.8879 |
730
+ | 63.3333 | 1140 | 0.0218 | 0.0000 | 0.8879 |
731
+ | 63.8889 | 1150 | 0.0476 | 0.0000 | 0.8868 |
732
+ | 64.4444 | 1160 | 0.021 | 0.0000 | 0.8868 |
733
+ | 65.0 | 1170 | 0.0435 | 0.0000 | 0.8856 |
734
+ | 65.5556 | 1180 | 0.0311 | 0.0000 | 0.8856 |
735
+ | 66.1111 | 1190 | 0.0275 | 0.0000 | 0.8856 |
736
+ | 66.6667 | 1200 | 0.0405 | 0.0000 | 0.8891 |
737
+ | 67.2222 | 1210 | 0.0009 | 0.0000 | 0.8891 |
738
+ | 67.7778 | 1220 | 0.0506 | 0.0000 | 0.8891 |
739
+ | 68.3333 | 1230 | 0.0538 | 0.0000 | 0.8891 |
740
+ | 68.8889 | 1240 | 0.0251 | 0.0000 | 0.8891 |
741
+ | 69.4444 | 1250 | 0.0168 | 0.0000 | 0.8891 |
742
+ | 70.0 | 1260 | 0.0527 | 0.0000 | 0.8903 |
743
+ | 70.5556 | 1270 | 0.0491 | 0.0000 | 0.8903 |
744
+ | 71.1111 | 1280 | 0.0092 | 0.0000 | 0.8903 |
745
+ | 71.6667 | 1290 | 0.0257 | 0.0000 | 0.8903 |
746
+ | **72.2222** | **1300** | **0.0455** | **0.0** | **0.8903** |
747
+ | 72.7778 | 1310 | 0.0271 | 0.0000 | 0.8903 |
748
+ | 73.3333 | 1320 | 0.04 | 0.0000 | 0.8903 |
749
+ | 73.8889 | 1330 | 0.0171 | 0.0000 | 0.8903 |
750
+ | 74.4444 | 1340 | 0.0157 | 0.0000 | 0.8903 |
751
+ | 75.0 | 1350 | 0.0323 | 0.0000 | 0.8903 |
752
+ | 75.5556 | 1360 | 0.0372 | 0.0000 | 0.8903 |
753
+ | 76.1111 | 1370 | 0.0109 | 0.0000 | 0.8903 |
754
+ | 76.6667 | 1380 | 0.0358 | 0.0000 | 0.8903 |
755
+ | 77.2222 | 1390 | 0.0279 | 0.0000 | 0.8903 |
756
+ | 77.7778 | 1400 | 0.0173 | 0.0000 | 0.8903 |
757
+ | 78.3333 | 1410 | 0.0409 | 0.0000 | 0.8903 |
758
+ | 78.8889 | 1420 | 0.0139 | 0.0000 | 0.8903 |
759
+ | 79.4444 | 1430 | 0.0123 | 0.0000 | 0.8903 |
760
+ | 80.0 | 1440 | 0.0232 | 0.0000 | 0.8903 |
761
+ | 80.5556 | 1450 | 0.0145 | 0.0000 | 0.8903 |
762
+ | 81.1111 | 1460 | 0.0261 | 0.0000 | 0.8903 |
763
+ | 81.6667 | 1470 | 0.0137 | 0.0000 | 0.8903 |
764
+ | 82.2222 | 1480 | 0.0146 | 0.0000 | 0.8903 |
765
+ | 82.7778 | 1490 | 0.0096 | 0.0000 | 0.8903 |
766
+ | 83.3333 | 1500 | 0.0245 | 0.0000 | 0.8903 |
767
+ | 83.8889 | 1510 | 0.0312 | 0.0000 | 0.8903 |
768
+ | 84.4444 | 1520 | 0.0174 | 0.0000 | 0.8903 |
769
+ | 85.0 | 1530 | 0.0437 | 0.0000 | 0.8903 |
770
+ | 85.5556 | 1540 | 0.0301 | 0.0000 | 0.8903 |
771
+ | 86.1111 | 1550 | 0.0119 | 0.0000 | 0.8903 |
772
+ | 86.6667 | 1560 | 0.0554 | 0.0000 | 0.8903 |
773
+ | 87.2222 | 1570 | 0.021 | 0.0000 | 0.8903 |
774
+ | 87.7778 | 1580 | 0.029 | 0.0000 | 0.8903 |
775
+ | 88.3333 | 1590 | 0.0132 | 0.0000 | 0.8903 |
776
+ | 88.8889 | 1600 | 0.0339 | 0.0000 | 0.8903 |
777
+ | 89.4444 | 1610 | 0.0412 | 0.0000 | 0.8903 |
778
+ | 90.0 | 1620 | 0.0847 | 0.0000 | 0.8903 |
779
+
780
+ * The bold row denotes the saved checkpoint.
781
+ </details>
782
+
783
+ ### Framework Versions
784
+ - Python: 3.10.12
785
+ - Sentence Transformers: 3.2.1
786
+ - Transformers: 4.44.2
787
+ - PyTorch: 2.5.0+cu121
788
+ - Accelerate: 0.34.2
789
+ - Datasets: 3.1.0
790
+ - Tokenizers: 0.19.1
791
+
792
+ ## Citation
793
+
794
+ ### BibTeX
795
+
796
+ #### Sentence Transformers
797
+ ```bibtex
798
+ @inproceedings{reimers-2019-sentence-bert,
799
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
800
+ author = "Reimers, Nils and Gurevych, Iryna",
801
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
802
+ month = "11",
803
+ year = "2019",
804
+ publisher = "Association for Computational Linguistics",
805
+ url = "https://arxiv.org/abs/1908.10084",
806
+ }
807
+ ```
808
+
809
+ #### GISTEmbedLoss
810
+ ```bibtex
811
+ @misc{solatorio2024gistembed,
812
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
813
+ author={Aivin V. Solatorio},
814
+ year={2024},
815
+ eprint={2402.16829},
816
+ archivePrefix={arXiv},
817
+ primaryClass={cs.LG}
818
+ }
819
+ ```
820
+
821
+ <!--
822
+ ## Glossary
823
+
824
+ *Clearly define terms in order to be accessible across audiences.*
825
+ -->
826
+
827
+ <!--
828
+ ## Model Card Authors
829
+
830
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
831
+ -->
832
+
833
+ <!--
834
+ ## Model Card Contact
835
+
836
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
837
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.44.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8b6a6466e0d1eab3f5595c4315e6b55a4fde87ca45ee6d05a0cf7557137bfd8
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff