|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- text-generation-inference |
|
datasets: |
|
- Abirate/english_quotes |
|
pipeline_tag: text-generation |
|
base_model: EleutherAI/gpt-neox-20b |
|
--- |
|
|
|
# hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset |
|
|
|
## Training procedure |
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
|
|
- load_in_8bit: False |
|
- load_in-4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of the `EleutherAI/gpt-neox-20b` model using the QLoRa library and the PEFT library. |
|
|
|
#### How to use |
|
|
|
The code below performs the following steps: |
|
|
|
1. Imports the necessary libraries: `torch` and classes from the `transformers` library. |
|
2. Specifies the `model_id` as "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset". |
|
3. Defines a `BitsAndBytesConfig` object named `bnb_config` with the following configuration: |
|
- `load_in_4bit` set to `True` |
|
- `bnb_4bit_use_double_quant` set to `True` |
|
- `bnb_4bit_quant_type` set to "nf4" |
|
- `bnb_4bit_compute_dtype` set to `torch.bfloat16` |
|
4. Initializes an `AutoTokenizer` object named `tokenizer` by loading the tokenizer for the specified `model_id`. |
|
5. Initializes an `AutoModelForCausalLM` object named `model` by loading the pre-trained model for the specified `model_id` and providing the `quantization_config` as `bnb_config`. The model is loaded on device `cuda:0`. |
|
6. Defines a variable `text` with the value "Twenty years from now". |
|
7. Defines a variable `device` with the value "cuda:0", representing the device on which the model will be executed. |
|
8. Encodes the `text` using the `tokenizer` and converts it to a PyTorch tensor, assigning it to the `inputs` variable. The tensor is moved to the specified `device`. |
|
9. Generates text using the `model.generate` method by passing the `inputs` tensor and setting the `max_new_tokens` parameter to 20. The generated output is assigned to the `outputs` variable. |
|
10. Decodes the `outputs` tensor using the `tokenizer` to obtain the generated text without special tokens, and assigns it to the `generated_text` variable. |
|
11. Prints the `generated_text`. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
|
# Load the base pre-trained model |
|
base_model_id = "EleutherAI/gpt-neox-20b" |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(base_model_id) |
|
|
|
# Fine-tuning model |
|
model_id = "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset" |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
# Load the fine-tuned model |
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}) |
|
|
|
text = "Twenty years from now" |
|
device = "cuda:0" |
|
inputs = tokenizer(text, return_tensors="pt").to(device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=20) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(generated_text) |
|
``` |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.4.0.dev0 |
|
|
|
## Training procedure |
|
|
|
- Trainable params: 8650752 |
|
- all params: 10597552128 |
|
- trainable%: 0.08162971878329976 |
|
|
|
|
|
## License |
|
|
|
This model is licensed under Apache 2.0. Please see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for more information. |
|
|