philippds's picture
Update README.md
64d50f3 verified
---
library_name: hivex
original_train_name: WildfireResourceManagement_difficulty_2_task_0_run_id_2_train
tags:
- hivex
- hivex-wildfire-resource-management
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-WRM-PPO-baseline-task-0-difficulty-2
results:
- task:
type: main-task
name: main_task
task-id: 0
difficulty-id: 2
dataset:
name: hivex-wildfire-resource-management
type: hivex-wildfire-resource-management
metrics:
- type: cumulative_reward
value: 115.81460418701172 +/- 26.078782597878128
name: Cumulative Reward
verified: true
- type: collective_performance
value: 51.81407127380371 +/- 18.776135090696116
name: Collective Performance
verified: true
- type: individual_performance
value: 27.154735565185547 +/- 10.446210720821945
name: Individual Performance
verified: true
- type: reward_for_moving_resources_to_neighbours
value: 60.09906158447266 +/- 33.42797696299573
name: Reward for Moving Resources to Neighbours
verified: true
- type: reward_for_moving_resources_to_self
value: 2.2813201546669006 +/- 1.1529928776928962
name: Reward for Moving Resources to Self
verified: true
---
This model serves as the baseline for the **Wildfire Resource Management** environment, trained and tested on task <code>0</code> with difficulty <code>2</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Wildfire Resource Management**<br>
Task: <code>0</code><br>
Difficulty: <code>2</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>500</code><br>
Training <code>max_steps</code>: <code>450000</code><br>
Testing <code>max_steps</code>: <code>45000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)