philippds's picture
Update README.md
57913a7 verified
|
raw
history blame
1.96 kB
---
library_name: hivex
original_train_name: WildfireResourceManagement_difficulty_6_task_0_run_id_0_train
tags:
- hivex
- hivex-wildfire-resource-management
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-WRM-PPO-baseline-task-0-difficulty-6
results:
- task:
type: main-task
name: main_task
task-id: 0
difficulty-id: 6
dataset:
name: hivex-wildfire-resource-management
type: hivex-wildfire-resource-management
metrics:
- type: cumulative_reward
value: 107.97416267395019 +/- 48.20278489614717
name: Cumulative Reward
verified: true
- type: collective_performance
value: 46.81386375427246 +/- 21.01886010155952
name: Collective Performance
verified: true
- type: individual_performance
value: 23.57359619140625 +/- 10.460954413923357
name: Individual Performance
verified: true
- type: reward_for_moving_resources_to_neighbours
value: 57.37900886535645 +/- 29.412938343401375
name: Reward for Moving Resources to Neighbours
verified: true
- type: reward_for_moving_resources_to_self
value: 0.5378097414970398 +/- 0.316862991497751
name: Reward for Moving Resources to Self
verified: true
---
This model serves as the baseline for the **Wildfire Resource Management** environment, trained and tested on task <code>0</code> with difficulty <code>6</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Wildfire Resource Management**<br>
Task: <code>0</code><br>
Difficulty: <code>6</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>500</code><br>
Training <code>max_steps</code>: <code>450000</code><br>
Testing <code>max_steps</code>: <code>45000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)