philippds's picture
Update README.md
2c2d1b4 verified
---
library_name: hivex
original_train_name: WildfireResourceManagement_difficulty_5_task_1_run_id_1_train
tags:
- hivex
- hivex-wildfire-resource-management
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-WRM-PPO-baseline-task-1-difficulty-5
results:
- task:
type: sub-task
name: keep_all
task-id: 1
difficulty-id: 5
dataset:
name: hivex-wildfire-resource-management
type: hivex-wildfire-resource-management
metrics:
- type: cumulative_reward
value: 301.4590789794922 +/- 50.589352153281204
name: "Cumulative Reward"
verified: true
- type: collective_performance
value: 52.42880744934082 +/- 13.213045945399395
name: "Collective Performance"
verified: true
- type: individual_performance
value: 27.22167682647705 +/- 6.5057905262466
name: "Individual Performance"
verified: true
- type: reward_for_moving_resources_to_neighbours
value: 1.2814587712287904 +/- 0.3169255575214482
name: "Reward for Moving Resources to Neighbours"
verified: true
- type: reward_for_moving_resources_to_self
value: 233.32887573242186 +/- 58.13535329798181
name: "Reward for Moving Resources to Self"
verified: true
---
This model serves as the baseline for the **Wildfire Resource Management** environment, trained and tested on task <code>1</code> with difficulty <code>5</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Wildfire Resource Management**<br>
Task: <code>1</code><br>
Difficulty: <code>5</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>500</code><br>
Training <code>max_steps</code>: <code>450000</code><br>
Testing <code>max_steps</code>: <code>45000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)