metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_base_adamax_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7111111111111111
hushem_1x_deit_base_adamax_0001_fold2
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2380
- Accuracy: 0.7111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.2110 | 0.5111 |
1.0185 | 2.0 | 12 | 1.0444 | 0.5778 |
1.0185 | 3.0 | 18 | 1.0252 | 0.6 |
0.2296 | 4.0 | 24 | 1.5024 | 0.6222 |
0.037 | 5.0 | 30 | 1.2302 | 0.6444 |
0.037 | 6.0 | 36 | 1.6236 | 0.6222 |
0.0105 | 7.0 | 42 | 1.5754 | 0.6444 |
0.0105 | 8.0 | 48 | 1.2131 | 0.7111 |
0.0017 | 9.0 | 54 | 1.0849 | 0.7111 |
0.0009 | 10.0 | 60 | 1.0675 | 0.6889 |
0.0009 | 11.0 | 66 | 1.0781 | 0.6889 |
0.0007 | 12.0 | 72 | 1.0946 | 0.6889 |
0.0007 | 13.0 | 78 | 1.1124 | 0.6889 |
0.0006 | 14.0 | 84 | 1.1301 | 0.6889 |
0.0005 | 15.0 | 90 | 1.1460 | 0.7111 |
0.0005 | 16.0 | 96 | 1.1557 | 0.7111 |
0.0004 | 17.0 | 102 | 1.1645 | 0.7111 |
0.0004 | 18.0 | 108 | 1.1728 | 0.7111 |
0.0004 | 19.0 | 114 | 1.1808 | 0.6889 |
0.0004 | 20.0 | 120 | 1.1880 | 0.7111 |
0.0004 | 21.0 | 126 | 1.1947 | 0.7111 |
0.0004 | 22.0 | 132 | 1.2002 | 0.7111 |
0.0004 | 23.0 | 138 | 1.2055 | 0.7111 |
0.0004 | 24.0 | 144 | 1.2100 | 0.7111 |
0.0003 | 25.0 | 150 | 1.2139 | 0.7111 |
0.0003 | 26.0 | 156 | 1.2174 | 0.7111 |
0.0003 | 27.0 | 162 | 1.2207 | 0.7111 |
0.0003 | 28.0 | 168 | 1.2234 | 0.7111 |
0.0003 | 29.0 | 174 | 1.2256 | 0.7111 |
0.0003 | 30.0 | 180 | 1.2273 | 0.7111 |
0.0003 | 31.0 | 186 | 1.2291 | 0.7111 |
0.0003 | 32.0 | 192 | 1.2307 | 0.7111 |
0.0003 | 33.0 | 198 | 1.2324 | 0.7111 |
0.0003 | 34.0 | 204 | 1.2336 | 0.7111 |
0.0003 | 35.0 | 210 | 1.2344 | 0.7111 |
0.0003 | 36.0 | 216 | 1.2351 | 0.7111 |
0.0003 | 37.0 | 222 | 1.2358 | 0.7111 |
0.0003 | 38.0 | 228 | 1.2367 | 0.7111 |
0.0003 | 39.0 | 234 | 1.2373 | 0.7111 |
0.0003 | 40.0 | 240 | 1.2377 | 0.7111 |
0.0003 | 41.0 | 246 | 1.2379 | 0.7111 |
0.0003 | 42.0 | 252 | 1.2380 | 0.7111 |
0.0003 | 43.0 | 258 | 1.2380 | 0.7111 |
0.0003 | 44.0 | 264 | 1.2380 | 0.7111 |
0.0003 | 45.0 | 270 | 1.2380 | 0.7111 |
0.0003 | 46.0 | 276 | 1.2380 | 0.7111 |
0.0003 | 47.0 | 282 | 1.2380 | 0.7111 |
0.0003 | 48.0 | 288 | 1.2380 | 0.7111 |
0.0003 | 49.0 | 294 | 1.2380 | 0.7111 |
0.0003 | 50.0 | 300 | 1.2380 | 0.7111 |
Framework versions
- Transformers 4.35.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1