hkivancoral's picture
End of training
eb1989e
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_sgd_adamax_lr0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3023255813953488

hushem_1x_deit_sgd_adamax_lr0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4906
  • Accuracy: 0.3023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5410 0.3023
1.6256 2.0 12 1.5383 0.3023
1.6256 3.0 18 1.5355 0.3023
1.6209 4.0 24 1.5329 0.3023
1.6213 5.0 30 1.5304 0.3023
1.6213 6.0 36 1.5279 0.3023
1.6054 7.0 42 1.5256 0.3023
1.6054 8.0 48 1.5235 0.3023
1.622 9.0 54 1.5216 0.3023
1.5637 10.0 60 1.5195 0.3023
1.5637 11.0 66 1.5177 0.3023
1.5868 12.0 72 1.5160 0.3023
1.5868 13.0 78 1.5142 0.3023
1.5951 14.0 84 1.5125 0.3023
1.5787 15.0 90 1.5108 0.3023
1.5787 16.0 96 1.5091 0.3023
1.5727 17.0 102 1.5077 0.3023
1.5727 18.0 108 1.5063 0.3023
1.5858 19.0 114 1.5049 0.3023
1.5652 20.0 120 1.5036 0.3023
1.5652 21.0 126 1.5024 0.3023
1.5577 22.0 132 1.5012 0.3023
1.5577 23.0 138 1.5001 0.3023
1.5855 24.0 144 1.4991 0.3023
1.5594 25.0 150 1.4981 0.3023
1.5594 26.0 156 1.4972 0.3023
1.5496 27.0 162 1.4964 0.3023
1.5496 28.0 168 1.4956 0.3023
1.5543 29.0 174 1.4949 0.3023
1.5415 30.0 180 1.4943 0.3023
1.5415 31.0 186 1.4938 0.3023
1.5408 32.0 192 1.4932 0.3023
1.5408 33.0 198 1.4926 0.3023
1.5602 34.0 204 1.4922 0.3023
1.5429 35.0 210 1.4918 0.3023
1.5429 36.0 216 1.4914 0.3023
1.5494 37.0 222 1.4912 0.3023
1.5494 38.0 228 1.4909 0.3023
1.5361 39.0 234 1.4908 0.3023
1.5628 40.0 240 1.4906 0.3023
1.5628 41.0 246 1.4906 0.3023
1.5458 42.0 252 1.4906 0.3023
1.5458 43.0 258 1.4906 0.3023
1.5716 44.0 264 1.4906 0.3023
1.5384 45.0 270 1.4906 0.3023
1.5384 46.0 276 1.4906 0.3023
1.5475 47.0 282 1.4906 0.3023
1.5475 48.0 288 1.4906 0.3023
1.5338 49.0 294 1.4906 0.3023
1.5337 50.0 300 1.4906 0.3023

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1