hkivancoral's picture
End of training
dd36004
|
raw
history blame
4.86 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_10x_beit_large_adamax_001_fold5

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8836
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3665 1.0 750 0.3594 0.8583
0.2964 2.0 1500 0.4126 0.8483
0.2817 3.0 2250 0.2955 0.895
0.2107 4.0 3000 0.4285 0.8483
0.2441 5.0 3750 0.2917 0.905
0.2284 6.0 4500 0.3000 0.8933
0.1417 7.0 5250 0.3775 0.9033
0.1212 8.0 6000 0.4010 0.9
0.1114 9.0 6750 0.3900 0.8917
0.1229 10.0 7500 0.5863 0.8833
0.0978 11.0 8250 0.5114 0.8883
0.019 12.0 9000 0.6596 0.9033
0.0244 13.0 9750 0.6428 0.9017
0.0242 14.0 10500 0.6293 0.9
0.0159 15.0 11250 0.5943 0.9067
0.0287 16.0 12000 0.4876 0.9033
0.0161 17.0 12750 0.7094 0.8933
0.0033 18.0 13500 0.7392 0.9117
0.0133 19.0 14250 0.6855 0.9017
0.0009 20.0 15000 0.7025 0.895
0.033 21.0 15750 0.5767 0.895
0.0007 22.0 16500 0.6533 0.8983
0.0005 23.0 17250 0.8501 0.8883
0.0041 24.0 18000 0.6751 0.91
0.0016 25.0 18750 0.8175 0.8983
0.022 26.0 19500 0.7166 0.9067
0.002 27.0 20250 0.7746 0.9033
0.0002 28.0 21000 0.7048 0.91
0.0002 29.0 21750 0.8217 0.9083
0.0187 30.0 22500 0.7107 0.8983
0.0002 31.0 23250 0.7863 0.9133
0.0 32.0 24000 0.8314 0.8983
0.0 33.0 24750 0.7909 0.8967
0.0003 34.0 25500 0.8566 0.905
0.0 35.0 26250 0.7280 0.9117
0.0 36.0 27000 0.8236 0.9017
0.0068 37.0 27750 0.7886 0.92
0.0 38.0 28500 0.8302 0.9017
0.0 39.0 29250 0.8589 0.9067
0.0 40.0 30000 0.8152 0.9017
0.0 41.0 30750 0.8501 0.905
0.0 42.0 31500 0.8563 0.91
0.0 43.0 32250 0.7690 0.9117
0.0 44.0 33000 0.8007 0.9083
0.0 45.0 33750 0.8622 0.9033
0.0001 46.0 34500 0.8624 0.905
0.0 47.0 35250 0.8665 0.9067
0.0 48.0 36000 0.8739 0.9067
0.0 49.0 36750 0.8825 0.9067
0.0 50.0 37500 0.8836 0.905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2