hkivancoral's picture
End of training
39e3280
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_sgd_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8583333333333333

smids_10x_beit_large_sgd_0001_fold4

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3577
  • Accuracy: 0.8583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.956 1.0 750 0.9742 0.4667
0.7783 2.0 1500 0.8200 0.63
0.7323 3.0 2250 0.7096 0.71
0.6337 4.0 3000 0.6341 0.7517
0.5065 5.0 3750 0.5795 0.775
0.4965 6.0 4500 0.5386 0.8
0.4578 7.0 5250 0.5091 0.8117
0.4692 8.0 6000 0.4857 0.825
0.4711 9.0 6750 0.4676 0.8333
0.3709 10.0 7500 0.4525 0.835
0.4051 11.0 8250 0.4402 0.8367
0.4533 12.0 9000 0.4305 0.8417
0.3537 13.0 9750 0.4215 0.8467
0.4025 14.0 10500 0.4147 0.8483
0.3254 15.0 11250 0.4082 0.8467
0.3312 16.0 12000 0.4031 0.8467
0.2854 17.0 12750 0.3983 0.8483
0.3355 18.0 13500 0.3942 0.8517
0.3881 19.0 14250 0.3905 0.8483
0.3257 20.0 15000 0.3873 0.8517
0.3303 21.0 15750 0.3846 0.8483
0.3308 22.0 16500 0.3815 0.8517
0.3025 23.0 17250 0.3791 0.85
0.3591 24.0 18000 0.3770 0.8517
0.3426 25.0 18750 0.3750 0.8567
0.2909 26.0 19500 0.3737 0.8567
0.3106 27.0 20250 0.3719 0.855
0.3129 28.0 21000 0.3704 0.855
0.2957 29.0 21750 0.3688 0.855
0.2639 30.0 22500 0.3673 0.855
0.2821 31.0 23250 0.3660 0.855
0.2912 32.0 24000 0.3649 0.8567
0.3006 33.0 24750 0.3640 0.8583
0.3129 34.0 25500 0.3632 0.8583
0.2463 35.0 26250 0.3625 0.86
0.3133 36.0 27000 0.3619 0.8583
0.3061 37.0 27750 0.3612 0.8583
0.3206 38.0 28500 0.3606 0.8583
0.3433 39.0 29250 0.3601 0.8583
0.3138 40.0 30000 0.3597 0.8583
0.2988 41.0 30750 0.3593 0.8583
0.3075 42.0 31500 0.3589 0.8583
0.3059 43.0 32250 0.3587 0.8583
0.3142 44.0 33000 0.3585 0.8583
0.3034 45.0 33750 0.3583 0.8583
0.2744 46.0 34500 0.3580 0.8583
0.2599 47.0 35250 0.3579 0.8583
0.2643 48.0 36000 0.3578 0.8583
0.2927 49.0 36750 0.3577 0.8583
0.2381 50.0 37500 0.3577 0.8583

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2