metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- hojzas/setfit-proj8-multilabel_2
metrics:
- accuracy
widget:
- text: >-
def first_with_given_key(iterable, key=lambda x: x):\n keys_used =
{}\n for item in iterable:\n rp = repr(key(item))\n if rp
not in keys_used.keys():\n keys_used[rp] =
repr(item)\n yield item
- text: >-
def first_with_given_key(iterable, key=lambda x: x):\n keys=[]\n for
i in iterable:\n if key(i) not in keys:\n yield
i\n keys.append(key(i))
- text: >-
def first_with_given_key(iterable, key=repr):\n set_of_keys =
set()\n lambda_key = (lambda x: key(x))\n for item in
iterable:\n key = lambda_key(item)\n try:\n
key_for_set = hash(key)\n except TypeError:\n
key_for_set = repr(key)\n if key_for_set in
set_of_keys:\n continue\n
set_of_keys.add(key_for_set)\n yield item
- text: >-
def first_with_given_key(iterable, key = lambda x: x):\n
found_keys={}\n for i in iterable:\n if key(i) not in
found_keys.keys():\n found_keys[key(i)]=i\n yield i
- text: >-
def first_with_given_key(the_iterable, key=lambda x: x):\n
temp_keys=[]\n for i in range(len(the_iterable)):\n if
(key(the_iterable[i]) not in temp_keys):\n
temp_keys.append(key(the_iterable[i]))\n yield
the_iterable[i]\n del temp_keys
pipeline_tag: text-classification
inference: false
co2_eq_emissions:
emissions: 0.26662775359268037
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
ram_total_size: 251.49160385131836
hours_used: 0.005
base_model: sentence-transformers/paraphrase-mpnet-base-v2
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model trained on the hojzas/setfit-proj8-multilabel_2 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
- Training Dataset: hojzas/setfit-proj8-multilabel_2
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("hojzas/setfit-proj8-multilabel_2")
# Run inference
preds = model("def first_with_given_key(iterable, key=lambda x: x):\n keys=[]\n for i in iterable:\n if key(i) not in keys:\n yield i\n keys.append(key(i))")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 43 | 92.5185 | 125 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0147 | 1 | 0.2842 | - |
0.7353 | 50 | 0.0045 | - |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: 0.000 kg of CO2
- Hours Used: 0.005 hours
Training Hardware
- On Cloud: No
- GPU Model: No GPU used
- CPU Model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- RAM Size: 251.49 GB
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.36.1
- PyTorch: 2.1.2+cu121
- Datasets: 2.14.7
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}