Safetensors
wav2vec2-bert

Fine-Tune Wav2Vec Bert 2.0 for Jyutping Recogition

Wav2Vec2Cantonese

This repository contains the code for fine-tuning the Wav2Vec Bert 2.0 model on the Common Voice 17 Cantonese dataset for Jyutping recognition. The model is trained on the Common Voice 17 Cantonese dataset.

Inference

Please clone the repo and follow the instructions to run the inference.

from model import Wav2Vec2BertForCantonese
from transformers import Wav2Vec2BertProcessor, SeamlessM4TFeatureExtractor, Wav2Vec2CTCTokenizer
import librosa

model_id = "hon9kon9ize/wav2vec2bert-jyutping"

tokenizer = Wav2Vec2CTCTokenizer(
    "vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|"
)
tone_tokenizer = Wav2Vec2CTCTokenizer(
    "tone_vocab.json",
    unk_token="[UNK]",
    pad_token="[PAD]",
    word_delimiter_token="|",
)

# load processor
feature_extractor = SeamlessM4TFeatureExtractor.from_pretrained(model_id)
processor = Wav2Vec2BertProcessor(
    feature_extractor=feature_extractor, tokenizer=tokenizer
)

model = Wav2Vec2BertForCantonese.from_pretrained(
    model_id,
    attention_dropout=0.2,
    hidden_dropout=0.2,
    feat_proj_dropout=0.0,
    mask_time_prob=0.0,
    layerdrop=0.0,
    add_adapter=True,
    ctc_loss_reduction="mean",
    pad_token_id=processor.tokenizer.pad_token_id,
    vocab_size=len(processor.tokenizer),
).eval().cuda()

test_audio = "test.wav"

audio_input, _ = librosa.load(test_audio, sr=16_000)
input_features = processor(audio_input, return_tensors="pt", sampling_rate=16_000).input_features[0]

output = model.inference(input_features=input_features.unsqueeze(0).cuda(), processor=processor, tone_tokenizer=tone_tokenizer)

print(output) # maa4 maa1 go3 jiu4 jiu2 jiu4 jiu4 juk6 zeoi3
Downloads last month
13
Safetensors
Model size
606M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for hon9kon9ize/wav2vec2bert-jyutping

Finetuned
(233)
this model

Dataset used to train hon9kon9ize/wav2vec2bert-jyutping