flan-t5-base-samsum / README.md
hongdoubao's picture
update model card README.md
c132a3c
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 46.8948
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-samsum
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3794
- Rouge1: 46.8948
- Rouge2: 23.4445
- Rougel: 39.5763
- Rougelsum: 43.209
- Gen Len: 17.2540
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 231 | 1.3935 | 46.6142 | 23.0937 | 39.1018 | 42.8696 | 17.2076 |
| No log | 2.0 | 462 | 1.3848 | 46.5553 | 23.0122 | 39.1493 | 42.764 | 17.1465 |
| 1.4249 | 3.0 | 693 | 1.3813 | 46.8705 | 23.5239 | 39.6689 | 43.2545 | 17.2930 |
| 1.4249 | 4.0 | 924 | 1.3801 | 46.9726 | 23.6143 | 39.6028 | 43.3278 | 17.2112 |
| 1.3528 | 5.0 | 1155 | 1.3794 | 46.8948 | 23.4445 | 39.5763 | 43.209 | 17.2540 |
### Framework versions
- Transformers 4.27.3
- Pytorch 1.10.0
- Datasets 2.10.1
- Tokenizers 0.13.2