test-ner / README.md
hr-wesbeaver's picture
test-ner
236e8e7 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test-ner
    results: []

test-ner

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0699
  • Precision: 0.3475
  • Recall: 0.3068
  • F1: 0.3259
  • Accuracy: 0.9793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0803 1.0 78 0.0882 0.1874 0.0759 0.1081 0.9749
0.0938 2.0 156 0.0699 0.3475 0.3068 0.3259 0.9793

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.2
  • Datasets 2.19.1
  • Tokenizers 0.15.2