Model Trained Using AutoTrain

  • Problem type: Binary Classification
  • Model ID: 1178743973
  • CO2 Emissions (in grams): 2.7282806494855265

Validation Metrics

  • Loss: 0.431733638048172
  • Accuracy: 0.7976190476190477
  • Precision: 0.6918918918918919
  • Recall: 0.8205128205128205
  • AUC: 0.8952141608391608
  • F1: 0.7507331378299119

Usage

This model finds self-reported stress from txt.

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hsaglamlar/autotrain-stress_v2-1178743973

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.