|
--- |
|
library_name: tf-keras |
|
tags: |
|
- gan |
|
- dcgan |
|
- huggan |
|
- tensorflow |
|
- unconditional-image-generation |
|
--- |
|
|
|
## Model description |
|
|
|
Simple DCGAN implementation in TensorFlow to generate CryptoPunks. |
|
|
|
## Generated samples |
|
<img src="https://github.com/dimitreOliveira/cryptogans/raw/main/assets/gen_samples.png" width="350" height="350"> |
|
|
|
Project repository: [CryptoGANs](https://github.com/dimitreOliveira/cryptogans). |
|
|
|
## Usage |
|
|
|
You can play with the HuggingFace [space demo](https://huggingface.co/spaces/huggan/crypto-gan). |
|
|
|
Or try it yourself |
|
|
|
```python |
|
import tensorflow as tf |
|
import matplotlib.pyplot as plt |
|
from huggingface_hub import from_pretrained_keras |
|
|
|
seed = 42 |
|
n_images = 36 |
|
codings_size = 100 |
|
generator = from_pretrained_keras("huggan/crypto-gan") |
|
|
|
def generate(generator, seed): |
|
noise = tf.random.normal(shape=[n_images, codings_size], seed=seed) |
|
generated_images = generator(noise, training=False) |
|
|
|
fig = plt.figure(figsize=(10, 10)) |
|
for i in range(generated_images.shape[0]): |
|
plt.subplot(6, 6, i+1) |
|
plt.imshow(generated_images[i, :, :, :]) |
|
plt.axis('off') |
|
plt.savefig("samples.png") |
|
|
|
generate(generator, seed) |
|
``` |
|
|
|
## Training data |
|
|
|
For training, I used the 10000 CryptoPunks images. |
|
|
|
## Model Plot |
|
|
|
<details> |
|
<summary>View Model Plot</summary> |
|
|
|
![Model Image](./model.png) |
|
|
|
</details> |