norllm-ai-normistral-7b-sft-qlora
This model is a fine-tuned version of NorLLM-AI/NorMistral-7B on the hugodk-sch/aftonposten_title_sft dataset. It achieves the following results on the evaluation set:
- Loss: 1.4403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7274 | 1.0 | 274 | 1.9432 |
1.1514 | 2.0 | 549 | 1.7111 |
0.645 | 3.0 | 823 | 1.5109 |
0.4291 | 4.0 | 1098 | 1.4415 |
0.3392 | 4.99 | 1370 | 1.4403 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
- Downloads last month
- 7
Model tree for hugodk-sch/norllm-ai-normistral-7b-sft-qlora
Base model
NorwAI/NorwAI-Mistral-7B