language:
- en
tags:
- summarization
datasets:
- xsum
metrics:
- rouge
widget:
- text: >-
National Commercial Bank (NCB), Saudi Arabia’s largest lender by assets,
agreed to buy rival Samba Financial Group for $15 billion in the biggest
banking takeover this year.NCB will pay 28.45 riyals ($7.58) for each
Samba share, according to a statement on Sunday, valuing it at about 55.7
billion riyals. NCB will offer 0.739 new shares for each Samba share, at
the lower end of the 0.736-0.787 ratio the banks set when they signed an
initial framework agreement in June.The offer is a 3.5% premium to Samba’s
Oct. 8 closing price of 27.50 riyals and about 24% higher than the level
the shares traded at before the talks were made public. Bloomberg News
first reported the merger discussions.The new bank will have total assets
of more than $220 billion, creating the Gulf region’s third-largest
lender. The entity’s $46 billion market capitalization nearly matches that
of Qatar National Bank QPSC, which is still the Middle East’s biggest
lender with about $268 billion of assets.
model-index:
- name: human-centered-summarization/financial-summarization-pegasus
results:
- task:
type: summarization
name: Summarization
dataset:
name: xsum
type: xsum
config: default
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 35.2055
verified: true
- name: ROUGE-2
type: rouge
value: 16.5689
verified: true
- name: ROUGE-L
type: rouge
value: 30.1285
verified: true
- name: ROUGE-LSUM
type: rouge
value: 30.1706
verified: true
- name: loss
type: loss
value: 2.7092134952545166
verified: true
- name: gen_len
type: gen_len
value: 15.1414
verified: true
PEGASUS for Financial Summarization
This model was fine-tuned on a novel financial news dataset, which consists of 2K articles from Bloomberg, on topics such as stock, markets, currencies, rate and cryptocurrencies.
It is based on the PEGASUS model and in particular PEGASUS fine-tuned on the Extreme Summarization (XSum) dataset: google/pegasus-xsum model. PEGASUS was originally proposed by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu in PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization.
How to use
We provide a simple snippet of how to use this model for the task of financial summarization in PyTorch.
from transformers import PegasusTokenizer, PegasusForConditionalGeneration, TFPegasusForConditionalGeneration
# Let's load the model and the tokenizer
model_name = "human-centered-summarization/financial-summarization-pegasus"
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name) # If you want to use the Tensorflow model
# just replace with TFPegasusForConditionalGeneration
# Some text to summarize here
text_to_summarize = "National Commercial Bank (NCB), Saudi Arabia’s largest lender by assets, agreed to buy rival Samba Financial Group for $15 billion in the biggest banking takeover this year.NCB will pay 28.45 riyals ($7.58) for each Samba share, according to a statement on Sunday, valuing it at about 55.7 billion riyals. NCB will offer 0.739 new shares for each Samba share, at the lower end of the 0.736-0.787 ratio the banks set when they signed an initial framework agreement in June.The offer is a 3.5% premium to Samba’s Oct. 8 closing price of 27.50 riyals and about 24% higher than the level the shares traded at before the talks were made public. Bloomberg News first reported the merger discussions.The new bank will have total assets of more than $220 billion, creating the Gulf region’s third-largest lender. The entity’s $46 billion market capitalization nearly matches that of Qatar National Bank QPSC, which is still the Middle East’s biggest lender with about $268 billion of assets."
# Tokenize our text
# If you want to run the code in Tensorflow, please remember to return the particular tensors as simply as using return_tensors = 'tf'
input_ids = tokenizer(text_to_summarize, return_tensors="pt").input_ids
# Generate the output (Here, we use beam search but you can also use any other strategy you like)
output = model.generate(
input_ids,
max_length=32,
num_beams=5,
early_stopping=True
)
# Finally, we can print the generated summary
print(tokenizer.decode(output[0], skip_special_tokens=True))
# Generated Output: Saudi bank to pay a 3.5% premium to Samba share price. Gulf region’s third-largest lender will have total assets of $220 billion
Evaluation Results
The results before and after the fine-tuning on our dataset are shown below:
Fine-tuning | R-1 | R-2 | R-L | R-S |
---|---|---|---|---|
Yes | 23.55 | 6.99 | 18.14 | 21.36 |
No | 13.8 | 2.4 | 10.63 | 12.03 |
Citation
You can find more details about this work in the following workshop paper. If you use our model in your research, please consider citing our paper:
T. Passali, A. Gidiotis, E. Chatzikyriakidis and G. Tsoumakas. 2021. Towards Human-Centered Summarization: A Case Study on Financial News. In Proceedings of the First Workshop on Bridging Human-Computer Interaction and Natural Language Processing(pp. 21–27). Association for Computational Linguistics.
BibTeX entry:
@inproceedings{passali-etal-2021-towards,
title = "Towards Human-Centered Summarization: A Case Study on Financial News",
author = "Passali, Tatiana and Gidiotis, Alexios and Chatzikyriakidis, Efstathios and Tsoumakas, Grigorios",
booktitle = "Proceedings of the First Workshop on Bridging Human{--}Computer Interaction and Natural Language Processing",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.hcinlp-1.4",
pages = "21--27",
}
Support
Contact us at info@medoid.ai if you are interested in a more sophisticated version of the model, trained on more articles and adapted to your needs!
More information about Medoid AI:
- Website: https://www.medoid.ai
- LinkedIn: https://www.linkedin.com/company/medoid-ai/