phi-2-dpo / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
2caa9a6 verified
|
raw
history blame
1.94 kB
metadata
license: mit
library_name: peft
tags:
  - alignment-handbook
  - generated_from_trainer
base_model: microsoft/phi-2
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: output_dir
    results: []

output_dir

This model is a fine-tuned version of phi_2_instruction on the HuggingFaceH4/ultrafeedback_binarized dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 62.33
AI2 Reasoning Challenge (25-Shot) 63.05
HellaSwag (10-Shot) 76.36
MMLU (5-Shot) 58.46
TruthfulQA (0-shot) 45.35
Winogrande (5-shot) 74.03
GSM8k (5-shot) 56.71