SentenceTransformer based on huudan123/stage1
This is a sentence-transformers model finetuned from huudan123/stage1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: huudan123/stage1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/stage2")
# Run inference
sentences = [
'bạn tiếp_tục nhập thông_tin cơ_sở dữ_liệu',
'bạn mọi thứ bạn bắt_đầu_từ',
'bạn tiếp_tục bạn nhập mọi thứ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7133 |
spearman_cosine | 0.714 |
pearson_manhattan | 0.6924 |
spearman_manhattan | 0.6987 |
pearson_euclidean | 0.6928 |
spearman_euclidean | 0.6988 |
pearson_dot | 0.6562 |
spearman_dot | 0.6553 |
pearson_max | 0.7133 |
spearman_max | 0.714 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 254,546 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 14.78 tokens
- max: 110 tokens
- min: 3 tokens
- mean: 14.78 tokens
- max: 110 tokens
- min: 3 tokens
- mean: 10.19 tokens
- max: 29 tokens
- Samples:
anchor positive negative conceptualy kem skiming hai kích_thước cơ_bản sản_phẩm địa_lý
sản_phẩm địa_lý làm kem skiming làm_việc
kem skiming hai tập_trung sản_phẩm địa_lý
sản_phẩm địa_lý làm kem skiming làm_việc
conceptualy kem skiming hai kích_thước cơ_bản sản_phẩm địa_lý
kem skiming hai tập_trung sản_phẩm địa_lý
bạn biết trong mùa giải tôi đoán ở mức_độ bạn bạn mất chúng đến mức_độ tiếp_theo họ quyết_định nhớ đội_ngũ cha_mẹ chiến_binh quyết_định gọi nhớ một người ba a một người đàn_ông đi đến thay_thế anh ta một người đàn_ông nào đi thay_thế anh ta
recals thực_hiện thứ sáu
anh mất mọi thứ ở mức_độ người dân nhớ
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,660 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 13.54 tokens
- max: 51 tokens
- min: 4 tokens
- mean: 13.54 tokens
- max: 51 tokens
- min: 3 tokens
- mean: 8.78 tokens
- max: 22 tokens
- Samples:
anchor positive negative anh ấy nói mẹ con về nhà
xuống xe_buýt trường anh ấy gọi mẹ
anh nói mẹ anh về nhà
xuống xe_buýt trường anh ấy gọi mẹ
anh ấy nói mẹ con về nhà
anh nói mẹ anh về nhà
tôi biết mình hướng tới mục_đích báo_cáo một địa_chỉ ở washington
tôi bao_giờ đến washington tôi chỉ_định ở tôi lạc cố_gắng tìm
tôi hoàn_toàn chắc_chắn tôi làm tôi đi đến washington tôi giao báo_cáo
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueeval_strategy
: epochper_device_train_batch_size
: 256per_device_eval_batch_size
: 256num_train_epochs
: 20lr_scheduler_type
: cosinewarmup_ratio
: 0.05fp16
: Trueload_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 20max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
---|---|---|---|---|
0 | 0 | - | - | 0.5307 |
0.0503 | 50 | 9.1742 | - | - |
0.1005 | 100 | 5.9716 | - | - |
0.1508 | 150 | 4.6737 | - | - |
0.2010 | 200 | 3.2819 | - | - |
0.2513 | 250 | 2.8832 | - | - |
0.3015 | 300 | 2.7327 | - | - |
0.3518 | 350 | 2.6305 | - | - |
0.4020 | 400 | 2.6239 | - | - |
0.4523 | 450 | 2.5527 | - | - |
0.5025 | 500 | 2.5271 | - | - |
0.5528 | 550 | 2.4904 | - | - |
0.6030 | 600 | 2.4987 | - | - |
0.6533 | 650 | 2.4009 | - | - |
0.7035 | 700 | 2.3944 | - | - |
0.7538 | 750 | 2.5054 | - | - |
0.8040 | 800 | 2.3989 | - | - |
0.8543 | 850 | 2.4019 | - | - |
0.9045 | 900 | 2.3638 | - | - |
0.9548 | 950 | 2.3478 | - | - |
1.0 | 995 | - | 3.0169 | 0.7322 |
1.0050 | 1000 | 2.4424 | - | - |
1.0553 | 1050 | 2.2478 | - | - |
1.1055 | 1100 | 2.2448 | - | - |
1.1558 | 1150 | 2.205 | - | - |
1.2060 | 1200 | 2.1811 | - | - |
1.2563 | 1250 | 2.1794 | - | - |
1.3065 | 1300 | 2.1495 | - | - |
1.3568 | 1350 | 2.1548 | - | - |
1.4070 | 1400 | 2.1299 | - | - |
1.4573 | 1450 | 2.1335 | - | - |
1.5075 | 1500 | 2.1388 | - | - |
1.5578 | 1550 | 2.0999 | - | - |
1.6080 | 1600 | 2.0859 | - | - |
1.6583 | 1650 | 2.0959 | - | - |
1.7085 | 1700 | 2.0334 | - | - |
1.7588 | 1750 | 2.0647 | - | - |
1.8090 | 1800 | 2.0261 | - | - |
1.8593 | 1850 | 2.0133 | - | - |
1.9095 | 1900 | 2.0517 | - | - |
1.9598 | 1950 | 2.0152 | - | - |
2.0 | 1990 | - | 3.1210 | 0.7187 |
2.0101 | 2000 | 1.924 | - | - |
2.0603 | 2050 | 1.7472 | - | - |
2.1106 | 2100 | 1.7485 | - | - |
2.1608 | 2150 | 1.7536 | - | - |
2.2111 | 2200 | 1.751 | - | - |
2.2613 | 2250 | 1.7172 | - | - |
2.3116 | 2300 | 1.7269 | - | - |
2.3618 | 2350 | 1.7352 | - | - |
2.4121 | 2400 | 1.7019 | - | - |
2.4623 | 2450 | 1.7278 | - | - |
2.5126 | 2500 | 1.7046 | - | - |
2.5628 | 2550 | 1.6962 | - | - |
2.6131 | 2600 | 1.6881 | - | - |
2.6633 | 2650 | 1.6806 | - | - |
2.7136 | 2700 | 1.6614 | - | - |
2.7638 | 2750 | 1.6918 | - | - |
2.8141 | 2800 | 1.6794 | - | - |
2.8643 | 2850 | 1.6708 | - | - |
2.9146 | 2900 | 1.6531 | - | - |
2.9648 | 2950 | 1.6236 | - | - |
3.0 | 2985 | - | 3.2556 | 0.7140 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for huudan123/stage2
Evaluation results
- Pearson Cosine on sts devself-reported0.713
- Spearman Cosine on sts devself-reported0.714
- Pearson Manhattan on sts devself-reported0.692
- Spearman Manhattan on sts devself-reported0.699
- Pearson Euclidean on sts devself-reported0.693
- Spearman Euclidean on sts devself-reported0.699
- Pearson Dot on sts devself-reported0.656
- Spearman Dot on sts devself-reported0.655
- Pearson Max on sts devself-reported0.713
- Spearman Max on sts devself-reported0.714