|
--- |
|
base_model: fnlp/bart-base-chinese |
|
tags: |
|
- generated_from_trainer |
|
- finance |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: >- |
|
bart-base-chinese-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1 |
|
results: [] |
|
language: |
|
- zh |
|
widget: |
|
- text: >- |
|
惠誉下调美国3A主权信用评级次日,经济学家看轻评级下调影响,美国7月ADP新增就业超预期爆表。风险情绪被重创,标普、道指、小盘股齐跌约1%,纳指跌超2%创2月以来最差。 |
|
美国超导跌近29%。美债发行海啸即将来袭,10年期美债收益率一度创九个月新高,两年期美债收益率跌幅显著收窄。美元转涨刷新三周半高位。 |
|
商品普跌。油价跌超2%,美油跌穿80美元整数位。黄金失守1940美元至三周新低。 |
|
中国市场方面,美股时段,中概股指跌4%,理想汽车则再创历史新高,离岸人民币一度跌穿7.21元,最深跌270点至一周低位。沪指收跌近1%,医药、银行疲软,超导概念、地产、券商强势。恒指收跌2.47%,南向资金净流入4.02亿港元。 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-chinese-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1 |
|
|
|
This model is a fine-tuned version of [fnlp/bart-base-chinese](https://huggingface.co/fnlp/bart-base-chinese) on the dataset of Wallstreetcn Morning News Market Overview with overnight index (000001.SH) movement labels. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.632678747177124 |
|
- Accuracy: 0.6551724137931034 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 75 | 0.6801 | 0.5862 | |
|
| No log | 2.0 | 150 | 0.6871 | 0.5862 | |
|
| No log | 3.0 | 225 | 0.6725 | 0.5517 | |
|
| No log | 4.0 | 300 | 0.6327 | 0.6552 | |
|
| No log | 5.0 | 375 | 0.7839 | 0.5862 | |
|
| No log | 6.0 | 450 | 0.9481 | 0.5862 | |
|
| 0.6041 | 7.0 | 525 | 1.4396 | 0.5172 | |
|
| 0.6041 | 8.0 | 600 | 1.8405 | 0.6552 | |
|
| 0.6041 | 9.0 | 675 | 2.1651 | 0.5862 | |
|
| 0.6041 | 10.0 | 750 | 2.2611 | 0.5862 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |