hw2942's picture
Update README.md
428d6f0
---
base_model: fnlp/bart-base-chinese
tags:
- generated_from_trainer
- finance
metrics:
- accuracy
model-index:
- name: >-
bart-base-chinese-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1
results: []
language:
- zh
widget:
- text: >-
惠誉下调美国3A主权信用评级次日,经济学家看轻评级下调影响,美国7月ADP新增就业超预期爆表。风险情绪被重创,标普、道指、小盘股齐跌约1%,纳指跌超2%创2月以来最差。
美国超导跌近29%。美债发行海啸即将来袭,10年期美债收益率一度创九个月新高,两年期美债收益率跌幅显著收窄。美元转涨刷新三周半高位。
商品普跌。油价跌超2%,美油跌穿80美元整数位。黄金失守1940美元至三周新低。
中国市场方面,美股时段,中概股指跌4%,理想汽车则再创历史新高,离岸人民币一度跌穿7.21元,最深跌270点至一周低位。沪指收跌近1%,医药、银行疲软,超导概念、地产、券商强势。恒指收跌2.47%,南向资金净流入4.02亿港元。
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-chinese-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1
This model is a fine-tuned version of [fnlp/bart-base-chinese](https://huggingface.co/fnlp/bart-base-chinese) on the dataset of Wallstreetcn Morning News Market Overview with overnight index (000001.SH) movement labels.
It achieves the following results on the evaluation set:
- Loss: 0.632678747177124
- Accuracy: 0.6551724137931034
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 75 | 0.6801 | 0.5862 |
| No log | 2.0 | 150 | 0.6871 | 0.5862 |
| No log | 3.0 | 225 | 0.6725 | 0.5517 |
| No log | 4.0 | 300 | 0.6327 | 0.6552 |
| No log | 5.0 | 375 | 0.7839 | 0.5862 |
| No log | 6.0 | 450 | 0.9481 | 0.5862 |
| 0.6041 | 7.0 | 525 | 1.4396 | 0.5172 |
| 0.6041 | 8.0 | 600 | 1.8405 | 0.6552 |
| 0.6041 | 9.0 | 675 | 2.1651 | 0.5862 |
| 0.6041 | 10.0 | 750 | 2.2611 | 0.5862 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3