metadata
base_model: thenlper/gte-base
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:206874
- loss:ContrastiveLoss
widget:
- source_sentence: >-
Cardiac silhouette size is top normal. Aorta is tortuous and demonstrates
mild atherosclerotic calcifications diffusely. Hilar contours are normal.
Pulmonary vasculature is normal. Lungs are clear. No pleural effusion or
pneumothorax is present. No acute osseous abnormality is detected.
sentences:
- 'No acute cardiopulmonary process. '
- 'No acute cardiopulmonary abnormality. '
- 'Normal chest radiographs. '
- source_sentence: >-
The lungs are mildly hyperexpanded but clear. No pleural effusion or
pneumothorax is seen. The cardiac and mediastinal silhouettes are
unremarkable.
sentences:
- 'Findings worrisome for early/mild left lower lobe pneumonia. '
- 'No acute cardiopulmonary process. The mediastinum is not widened. '
- 'No radiographic evidence of acute cardiopulmonary disease. '
- source_sentence: >-
Lung volumes are slightly low. The cardiomediastinal silhouette and
pulmonary vasculature a similar to the prior examination, and
unremarkable, accounting for low lung volumes. Midline sternal wires are
intact and well aligned. Mediastinal clips and anastomotic markers are
noted. The lungs are clear. There is no pleural effusion or pneumothorax.
Bilateral shoulder prostheses are partially imaged.
sentences:
- 'No acute cardiopulmonary process. '
- 'No acute intrathoracic abnormality. '
- >-
Pulmonary edema, increasing pleural effusions, known mass in the right
lower lung.
- source_sentence: >-
The left hemi thorax remains opacified. The right lung is now clear. The
right mediastinal silhouette is unchanged. An endotracheal tube feeding
tube and right internal jugular catheter remain in place.
sentences:
- 'The right lung now appears clear. No other significant change. '
- 'No acute cardiopulmonary abnormality. '
- >-
Chest findings within normal limits, no secondary metastases suspicious
lesions identified.
- source_sentence: >-
The atient is status post coronary artery bypass graft surgery. The heart
is mildly enlarged. There is a large hiatal hernia with an air-fluid
level. Otherwise, the mediastinal and hilar contours are unremarkable. The
lungs appear clear. The chest is hyperinflated. There is no pleural
effusion or pneumothorax. Bony structures are unremarkable.
sentences:
- >-
1. Left apical pneumothorax still small, but considerably larger. Left
base pneumothorax also slightly larger. 2. Minimal lucency adjacent to
the the aortic knob may also represent part of the left lung
pneumothorax. Attention to this area on followup films to exclude any
mediastinal air is requested. 3. Extensive subcutaneous emphysema,
equivocally slightly greater than on the prior film. 4. Minimal interval
change in position of the left chest tube. 5. Right pneumothorax also
increased, still small in width, but now seen not only at the right lung
apex, but also along the right lateral chest wall and at the right
costophrenic angle in the adjoining lung base.
- 'No evidence of acute disease. Normal cardiac size. '
- >-
No evidence of acute disease. Hyperinflation. Large hiatal hernia.
Status post coronary artery bypass graft surgery.
model-index:
- name: SentenceTransformer based on thenlper/gte-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: validation
type: validation
metrics:
- type: pearson_cosine
value: 0.8022517557853334
name: Pearson Cosine
- type: spearman_cosine
value: 0.810529949353046
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8243043367211444
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8105359053829688
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.824484835649088
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8105299161732425
name: Spearman Euclidean
- type: pearson_dot
value: 0.802251755767147
name: Pearson Dot
- type: spearman_dot
value: 0.8105299280214241
name: Spearman Dot
- type: pearson_max
value: 0.824484835649088
name: Pearson Max
- type: spearman_max
value: 0.8105359053829688
name: Spearman Max
SentenceTransformer based on thenlper/gte-base
This is a sentence-transformers model finetuned from thenlper/gte-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hyojuuun/gte_base_MIMICCXR_FT")
# Run inference
sentences = [
'The atient is status post coronary artery bypass graft surgery. The heart is mildly enlarged. There is a large hiatal hernia with an air-fluid level. Otherwise, the mediastinal and hilar contours are unremarkable. The lungs appear clear. The chest is hyperinflated. There is no pleural effusion or pneumothorax. Bony structures are unremarkable. ',
'No evidence of acute disease. Hyperinflation. Large hiatal hernia. Status post coronary artery bypass graft surgery. ',
'1. Left apical pneumothorax still small, but considerably larger. Left base pneumothorax also slightly larger. 2. Minimal lucency adjacent to the the aortic knob may also represent part of the left lung pneumothorax. Attention to this area on followup films to exclude any mediastinal air is requested. 3. Extensive subcutaneous emphysema, equivocally slightly greater than on the prior film. 4. Minimal interval change in position of the left chest tube. 5. Right pneumothorax also increased, still small in width, but now seen not only at the right lung apex, but also along the right lateral chest wall and at the right costophrenic angle in the adjoining lung base. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8023 |
spearman_cosine | 0.8105 |
pearson_manhattan | 0.8243 |
spearman_manhattan | 0.8105 |
pearson_euclidean | 0.8245 |
spearman_euclidean | 0.8105 |
pearson_dot | 0.8023 |
spearman_dot | 0.8105 |
pearson_max | 0.8245 |
spearman_max | 0.8105 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 206,874 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 78.31 tokens
- max: 324 tokens
- min: 4 tokens
- mean: 26.68 tokens
- max: 165 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label The lung volumes are low which accentuates the linear and interstitial opacities. An ill-defined opacity in the left lung in the third/fourth interspace has increased since the prior can be early pneumonia. No pneumothorax. Mild to moderate gastric and small bowel distension partially visualized.
No evidence of acute cardiopulmonary disease.
0.0
PA and lateral views of the chest were provided demonstrating no focal consolidation, effusion or pneumothorax. The cardiomediastinal silhouette is normal. Bony structures are intact. No free air below the right hemidiaphragm.
No acute intrathoracic process.
1.0
Previously seen right-sided PICC is no longer seen. Enlargement of the cardiomediastinal silhouette is grossly stable. There are low lung volumes, which accentuate the bronchovascular markings. No focal consolidation is seen. There is no pleural effusion or pneumothorax.
Low lung volumes but no focal consolidation to suggest pneumonia.
1.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 96per_device_eval_batch_size
: 96multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 96per_device_eval_batch_size
: 96per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | validation_spearman_max |
---|---|---|---|
0.0464 | 100 | - | 0.6178 |
0.0928 | 200 | - | 0.6904 |
0.1392 | 300 | - | 0.7290 |
0.1856 | 400 | - | 0.7596 |
0.2320 | 500 | 0.0191 | 0.7715 |
0.2784 | 600 | - | 0.7783 |
0.3248 | 700 | - | 0.7851 |
0.3712 | 800 | - | 0.7885 |
0.4176 | 900 | - | 0.7942 |
0.4640 | 1000 | 0.0118 | 0.7965 |
0.5104 | 1100 | - | 0.8061 |
0.5568 | 1200 | - | 0.8035 |
0.6032 | 1300 | - | 0.8082 |
0.6497 | 1400 | - | 0.8105 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}