File size: 22,551 Bytes
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import logging
import random

import torch
from torch.cuda.amp import autocast as autocast
from torchvision import models
import torch.nn as nn

from medomni.common.registry import registry
from medomni.models.blip2 import Blip2Base, disabled_train
from medomni.models.modeling_llama import LlamaForCausalLM
from transformers import LlamaTokenizer
from transformers import SwinModel
import torch.nn.functional as F
import math
from einops import rearrange, repeat
from einops_exts import rearrange_many
import open_clip
import segmentation_models_pytorch as smp
from medomni.models.UNet import UNet3d
from huggingface_hub import PyTorchModelHubMixin
import ipdb
from peft import (
    get_peft_model,
    LoraConfig,
    PrefixTuningConfig,
    PromptEncoderConfig,
    PromptTuningConfig,
    TaskType,
)

class GroupNorm(nn.GroupNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)

class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)

def replace_batchnorm_2d(model):
    for name, module in reversed(model._modules.items()):
        if len(list(module.children())) > 0:
            model._modules[name] = replace_batchnorm_2d(module)
        
        if isinstance(module, nn.BatchNorm2d):
            model._modules[name] = GroupNorm(num_groups=16, num_channels=module.num_features)
    return model

def dice_loss(input, target):
    input = torch.sigmoid(input)
    smooth = 1.0
    iflat = input.view(-1)
    tflat = target.view(-1)
    intersection = (iflat * tflat).sum()
    return ((2.0 * intersection + smooth) / (iflat.sum() + tflat.sum() + smooth))

class FocalLoss(nn.Module):
    def __init__(self, gamma):
        super().__init__()
        self.gamma = gamma

    def forward(self, input, target):
        if not (target.size() == input.size()):
            raise ValueError("Target size ({}) must be the same as input size ({})"
                             .format(target.size(), input.size()))
        max_val = (-input).clamp(min=0)
        loss = input - input * target + max_val + \
            ((-max_val).exp() + (-input - max_val).exp()).log()
        invprobs = F.logsigmoid(-input * (target * 2.0 - 1.0))
        loss = (invprobs * self.gamma).exp() * loss
        return loss.mean()

class MixedLoss(nn.Module):
    def __init__(self, alpha, gamma):
        super().__init__()
        self.alpha = alpha
        self.focal = FocalLoss(gamma)

    def forward(self, input, target):
        loss = self.alpha*self.focal(input, target) - torch.log(dice_loss(input, target))
        return loss.mean()

def trans_seg(sample_num, bsz):
    labels = torch.zeros((bsz, 10))
    c_bsz = 0
    for num1 in sample_num:
        num2 = num1.split('-')
        for num3 in num2:
            if num3 != 'n/a':
                c4 = 0
                for num in num3.split(','):
                    labels[c_bsz, c4] = float(num)
                    c4 += 1
                c_bsz += 1
    return labels

def trans_det(sample_num, bsz):
    labels = torch.zeros((bsz, 4))
    c_bsz = 0
    for num1 in sample_num:
        num2 = num1.split(';')
        for num3 in num2:
            if num3 != 'n/a':
                c4 = 0
                for num in num3.split(','):
                    labels[c_bsz, c4] = float(num)
                    c4 += 1
                c_bsz += 1
    return labels

def trans_keypoint(sample_num, bsz):
    labels = torch.zeros((bsz, 2))
    c_bsz = 0
    for num1 in sample_num:
        num2 = num1.split(';')
        for num3 in num2:
            if num3 != 'n/a':
                c4 = 0
                for num in num3.split(','):
                    labels[c_bsz, c4] = float(num)
                    c4 += 1
                c_bsz += 1
    return labels

@registry.register_model("medomni")
class MedOmni(Blip2Base, PyTorchModelHubMixin):
    PRETRAINED_MODEL_CONFIG_DICT = {
        "medomni": "configs/models/medomni.yaml",
    }
    def __init__(
        self,
        config,
    ):
        super().__init__()
        freeze_vit=True
        llama_model=config['llama_model']
        max_txt_len=config['max_txt_len']
        low_resource=False  # use 8 bit and put vit in cpu / have not been tested
        end_sym=config['end_sym']
        # self.tokenizer = self.init_tokenizer()
        self.low_resource = low_resource

        print('Loading VIT')
        self.visual_encoder_2d = SwinModel.from_pretrained('microsoft/swin-base-patch4-window7-224')
        self.visual_encoder_3d = UNet3d(in_channels=1, n_classes=1, n_channels=32)
        self.ln_vision_2d = LayerNorm(1024)
        self.ln_vision_3d = LayerNorm(256)

        if freeze_vit:
            for name, param in self.visual_encoder_2d.named_parameters():
                param.requires_grad = False
            self.visual_encoder_2d = self.visual_encoder_2d.eval()
            self.visual_encoder_2d.train = disabled_train
            for name, param in self.ln_vision_2d.named_parameters():
                param.requires_grad = False
            self.ln_vision_2d = self.ln_vision_2d.eval()
            self.ln_vision_2d.train = disabled_train
            for name, param in self.visual_encoder_3d.named_parameters():
                param.requires_grad = False
            self.visual_encoder_3d = self.visual_encoder_3d.eval()
            self.visual_encoder_3d.train = disabled_train
            for name, param in self.ln_vision_3d.named_parameters():
                param.requires_grad = False
            self.ln_vision_3d = self.ln_vision_3d.eval()
            self.ln_vision_3d.train = disabled_train
            logging.info("freeze vision encoder")
        print('Loading VIT Done')

        print('Loading LLAMA')
        self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, legacy=False, use_fast=False)
        special_token = {}
        special_token["additional_special_tokens"] = ['<ImageHere>']
        self.llama_tokenizer.add_special_tokens(
            special_token
        )
        self.llama_tokenizer.add_tokens("<DET>")
        self.llama_tokenizer.add_tokens("<2DSEG>")
        self.llama_tokenizer.add_tokens("<3DSEG>")
        # self.llama_tokenizer.add_tokens("<2DPOINT>")
        self.llama_tokenizer.add_tokens("<N/A>")
        self.det_token_idx = self.llama_tokenizer("<DET>", add_special_tokens=False).input_ids[0]
        self.seg_token_idx_2d = self.llama_tokenizer("<2DSEG>", add_special_tokens=False).input_ids[0]
        self.seg_token_idx_3d = self.llama_tokenizer("<3DSEG>", add_special_tokens=False).input_ids[0]
        # self.point_token_idx_2d = self.llama_tokenizer("<2DPOINT>", add_special_tokens=False).input_ids[0]
        self.na_token_idx = self.llama_tokenizer("<N/A>", add_special_tokens=False).input_ids[0]
        self.llama_tokenizer.pad_token = 0

        if self.low_resource:
            self.llama_model = LlamaForCausalLM.from_pretrained(
                llama_model,
                torch_dtype=torch.bfloat16,
                load_in_8bit=True,
                device_map="auto"
            )
        else:
            self.llama_model = LlamaForCausalLM.from_pretrained(
                llama_model,
                torch_dtype=torch.bfloat16,
            )

        self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
        self.embed_tokens = self.llama_model.get_input_embeddings()
        self.embed_states = self.llama_model.get_output_embeddings() # cannot remove
        # ---LoRA---
        class CastOutputToFloat(nn.Sequential):
            def forward(self, x): return super().forward(x).to(torch.bfloat16)
        self.llama_model.lm_head = CastOutputToFloat(self.llama_model.lm_head)
        # ---LoRA---

        print("Setup PEFT")
        peft_config = LoraConfig(
            task_type="CAUSAL_LM", inference_mode=False,
            r=16,
            lora_alpha=16, lora_dropout=0.1, 
            target_modules=['q_proj', 'v_proj']
        ) # 8 32 hyz 9.21
        self.llama_model = get_peft_model(self.llama_model, peft_config)
        self.llama_proj_2d = nn.Linear(1024, self.llama_model.config.hidden_size)
        self.llama_proj_3d = nn.Linear(256, self.llama_model.config.hidden_size)

        # # Detection
        text_det = nn.Sequential(
            LayerNorm(self.llama_model.config.hidden_size),
            nn.Linear(self.llama_model.config.hidden_size, 256),
            nn.ReLU(inplace=True),
            LayerNorm(256),
            nn.Linear(256, 4),
        )
        self.text_det = text_det
        self.det_loss = torch.nn.SmoothL1Loss()

        # # Keypoint
        # text_point = nn.Sequential(
        #     LayerNorm(self.llama_model.config.hidden_size),
        #     nn.Linear(self.llama_model.config.hidden_size, 256),
        #     nn.ReLU(inplace=True),
        #     LayerNorm(256),
        #     nn.Linear(256, 2),
        # )
        # self.text_point = text_point
        # self.keypoint_loss = torch.nn.SmoothL1Loss()

        # Segmentation
        self.model_seg_2d = smp.Unet(encoder_name="resnet18", encoder_weights="imagenet", in_channels=3, classes=1)
        self.model_seg_2d = replace_batchnorm_2d(self.model_seg_2d) # GN is much better than BN

        text2seg_2d = nn.Sequential(
            LayerNorm(self.llama_model.config.hidden_size),
            nn.Linear(self.llama_model.config.hidden_size, 512),
        )
        self.text2seg_2d = text2seg_2d
        self.text2seg_2d_ln = LayerNorm(512)
        self.text2seg_2d_gn = GroupNorm(16, 512)
        text2seg_3d = nn.Sequential(
            LayerNorm(self.llama_model.config.hidden_size),
            nn.Linear(self.llama_model.config.hidden_size, 256),
        )
        self.text2seg_3d = text2seg_3d
        self.text2seg_3d_ln = LayerNorm(256)
        self.text2seg_3d_gn = GroupNorm(16, 256)
        self.seg_loss = MixedLoss(10.0, 2.0)

        self.max_txt_len = max_txt_len
        self.end_sym = end_sym
        self.prompt_list = []

    def vit_to_cpu(self):
        self.ln_vision.to("cpu")
        self.ln_vision.float()
        self.visual_encoder.to("cpu")
        self.visual_encoder.float()

    def encode_img(self, image, modals, task_types=[]):
        B,S,_,_,_ = image.shape
        device = image.device
        image_embeds_list = None
        if self.low_resource:
            self.vit_to_cpu()
            image = image.to("cpu")

        with self.maybe_autocast():
            if 'ct' in modals:
                image_embeds_list = self.visual_encoder_3d(image, encoder_only=True)
                image_embeds_list = [_.to(device) for _ in image_embeds_list]
                image_embeds = image_embeds_list[-1].detach()
                image_embeds = F.adaptive_avg_pool3d(image_embeds, (1, 3, 3)).view(B, image_embeds.shape[1], -1).permute(0, 2, 1)
                inputs_llama = self.llama_proj_3d(self.ln_vision_3d(image_embeds))
                inputs_llama = rearrange(inputs_llama, "(b s) c d -> b s c d", b=B, s=S).to(torch.bfloat16)
                atts_llama = torch.ones(inputs_llama.size()[:-2], dtype=torch.long).to(image.device)
            else:
                image = rearrange(image, "b s c h w -> (b s) c h w")
                image_embeds = self.visual_encoder_2d(image)['last_hidden_state'].to(device)
                image_embeds_unp = image_embeds.permute(0, 2, 1).view(B*S,-1,7,7)
                image_embeds_unp = F.adaptive_avg_pool2d(image_embeds_unp, (3, 3))
                image_embeds = image_embeds_unp.view(B*S, -1, 9).permute(0, 2, 1)
                inputs_llama = self.llama_proj_2d(self.ln_vision_2d(image_embeds))
                if 'segmentation' not in task_types:
                    inputs_llama = rearrange(inputs_llama, "(b s) c d -> b s c d", b=B, s=S).to(torch.bfloat16)
                    atts_llama = torch.ones(inputs_llama.size()[:-2], dtype=torch.long).to(image.device)
                else:
                    inputs_llama = rearrange(inputs_llama, "(b s) c d -> b s c d", b=B, s=S).to(torch.bfloat16).detach() # add detach() for segmentation tasks
                    atts_llama = torch.ones(inputs_llama.size()[:-2], dtype=torch.long).to(image.device).detach()
         
        return inputs_llama, atts_llama, image_embeds_list

    def prompt_concat(self, img_embeds, atts_img, prompt):
        if prompt:
            batch_size = img_embeds.shape[0]
            p_after_embeds = self.embed_tokens(prompt.input_ids).expand(batch_size, -1, -1)
            wrapped_img_embeds = torch.cat([img_embeds, p_after_embeds], dim=1)
            wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1])                
            return wrapped_img_embeds, wrapped_atts_img
        else:
            return img_embeds, atts_img

    def prompt_wrap(self, img_embeds, atts_img, prompt_list, num_imgs, seg=None):
        bsz = img_embeds.shape[0]
        if prompt_list:
            img_idx = ([], [])
            for i in range(len(num_imgs)):
                for j in range(num_imgs[i]):
                    img_idx[0].append(i)
                    img_idx[1].append(j)
            prompt_tokens = self.llama_tokenizer(prompt_list, return_tensors="pt", padding="longest", truncation=True, max_length=256).to(img_embeds.device)
            idx = (prompt_tokens.input_ids == 32000).nonzero(as_tuple=True)
            prompt_tokens.input_ids[idx] = 123 # avoid memory issue
            p_embeds = self.embed_tokens(prompt_tokens.input_ids).expand(bsz, -1, -1)
            if seg is None:
                p_embeds[idx] = rearrange(img_embeds[img_idx], "b c d -> (b c) d").to(torch.bfloat16)
            else:
                p_embeds[idx] = rearrange(img_embeds[img_idx], "b c d -> (b c) d").to(torch.bfloat16).detach()
            return p_embeds, atts_img
        else:
            return img_embeds, atts_img

    def forward(self, samples):
        image = samples["image"]
        bsz = image.shape[0]
        img_embeds, atts_img, img_embeds_list = self.encode_img(image, samples['modal'], samples['task_type'])
        prefix_list = []
        tag_list = [[] for _ in range(bsz)]
        placeholder = ['<ImageHere>'] * 9 # 9 = the number of visual tokens
        for j in range(bsz):
            num = samples['num_imgs'][j]
            prefix = '' # Can add some prompt, such as 'You will be given an image, please describe everything you see' 
            for i in range(num):
                prefix += '<img' + str(i) + '>' + ''.join(x for x in placeholder) + '</img' + str(i) + '>' 
                tag_list[j].append('<img' + str(i) + '>')
            prefix_list.append('###Human:' + prefix)
        img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prefix_list, samples['num_imgs'], seg = None if 'segmentation' not in samples['task_type'] else 'yes')
        self.llama_tokenizer.padding_side = "right"

        prompt = [t for t in samples['question']]
        for i in range(len(prompt)):
            tags = ''
            for tag in tag_list[i]:
                if tag not in prompt[i]:
                    tags += tag
            prompt[i] = prompt[i].replace('_*_', tags)
        
        if 'detection' in samples['task_type'] or 'keypoint' in samples['task_type']:
            sample_ans = [ans.split('|||')[0] for ans in samples['answer']]
            sample_num = [ans.split('|||')[1] for ans in samples['answer']]
        else:
            sample_ans = samples['answer']
        text = ['###Assistant: ' + str(t) + self.end_sym for t in sample_ans]

        prompt_tokens = self.llama_tokenizer(
            prompt,
            return_tensors="pt",
            padding='longest',
            truncation=True,
            max_length=256,
            add_special_tokens=False
        ).to(image.device)

        img_embeds, atts_img = self.prompt_concat(img_embeds, atts_img, prompt_tokens) 

        to_regress_tokens = self.llama_tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            add_special_tokens=False
        ).to(image.device)

        targets = to_regress_tokens.input_ids.masked_fill(
            to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
        )

        empty_targets = (
            torch.ones([atts_img.shape[0], atts_img.shape[1]+1],
                       dtype=torch.long).to(image.device).fill_(-100)  # plus one for bos
        )
        targets = torch.cat([empty_targets, targets], dim=1)

        batch_size = img_embeds.shape[0]
        bos = torch.ones([batch_size, 1],
                         dtype=to_regress_tokens.input_ids.dtype,
                         device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id

        bos_embeds = self.embed_tokens(bos)
        atts_bos = atts_img[:, :1]

        to_regress_embeds = self.embed_tokens(to_regress_tokens.input_ids)
        inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1)
        attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
        with self.maybe_autocast():
            outputs = self.llama_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                labels=targets,
                output_hidden_states=True,
            )
        loss = outputs.loss

        if 'detection' in samples['task_type']:
            with self.maybe_autocast():
                hidden_states = outputs.hidden_states[-1]
                token_mask = targets == self.det_token_idx
                target_states = hidden_states[token_mask]
                with self.maybe_autocast():
                    det_states = self.text_det(target_states)
                labels = trans_det(sample_num, det_states.shape[0])
                labels = labels.to(targets.device)
                det_loss = self.det_loss(det_states, labels)
                loss += det_loss * 1e2

        if 'keypoint' in samples['task_type']:
            with self.maybe_autocast():
                hidden_states = outputs.hidden_states[-1]
                token_mask = targets == self.point_token_idx_2d
                target_states = hidden_states[token_mask]
                with self.maybe_autocast():
                    point_states = self.text_point(target_states)
                labels = trans_keypoint(sample_num, point_states.shape[0])
                labels = labels.to(targets.device)
                keypoint_loss = self.keypoint_loss(point_states, labels)
                loss += keypoint_loss * 1e2

        if 'segmentation' in samples['task_type']:
            if 'ct' in samples['modal']:
                masks = samples['answer_img']
                with self.maybe_autocast():
                    img_embeds_list = self.visual_encoder_3d(image, encoder_only=True)
                    img_embeds_list = [_.to(targets.device) for _ in img_embeds_list]
                    hidden_states = outputs.hidden_states[-1]
                    token_mask = targets == self.seg_token_idx_3d
                    target_states = hidden_states[token_mask]   
                    seg_states = self.text2seg_3d(target_states)
                    last_feats = img_embeds_list[-1]
                    last_feats = last_feats + seg_states.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
                    last_feats = self.text2seg_3d_gn(last_feats)
                    img_embeds_list[-1] = last_feats
                    seg_preds = self.visual_encoder_3d(encoder_only=False, x_=img_embeds_list)
                    loss += self.seg_loss(seg_preds, masks.float()) # +
            else:  
                masks = samples['answer_img']
                with self.maybe_autocast():
                    feats = self.model_seg_2d.encoder(image[:,0])
                    last_feats = feats[-1]
                    hidden_states = outputs.hidden_states[-1]
                    token_mask = targets == self.seg_token_idx_2d
                    target_states = hidden_states[token_mask]
                    seg_states = self.text2seg_2d(target_states)
                    last_feats = last_feats+seg_states.unsqueeze(-1).unsqueeze(-1)
                    last_feats = self.text2seg_2d_gn(last_feats)
                    feats[-1] = last_feats
                    seg_feats = self.model_seg_2d.decoder(*feats)
                    seg_preds = self.model_seg_2d.segmentation_head(seg_feats)
                    loss += self.seg_loss(seg_preds, masks.float())

        return {"loss": loss, "modal": samples['modal'][0], "task_type": samples['task_type'][0]}

    @classmethod
    def from_config(cls, cfg, finetune=False):
        # llama_model = cfg.get("llama_model")
        # freeze_vit = cfg.get("freeze_vit", True)
        # low_resource = cfg.get("low_resource", False)
        # max_txt_len = cfg.get("max_txt_len", 32)
        # end_sym = cfg.get("end_sym", '\n')
        # ipdb.set_trace()

        # model = cls(
        #     freeze_vit=freeze_vit,
        #     llama_model=llama_model,
        #     max_txt_len=max_txt_len,
        #     low_resource=low_resource,
        #     end_sym=end_sym
        # )
        model = cls(cfg)

        # load checkpoint
        ckpt_path = cfg.get("ckpt", "")
        if ckpt_path:
            print("Load Checkpoint: {}".format(ckpt_path))
            ckpt = torch.load(ckpt_path, map_location="cpu")
            if finetune:
                current_model_dict = model.state_dict()
                weights = ckpt['model']
                new_state_dict = {}
                for k in list(current_model_dict.keys()):
                    if k in list(weights.keys()):
                        if weights[k].size() == current_model_dict[k].size():
                            new_state_dict[k] = weights[k]
                        else:
                            new_state_dict[k] = current_model_dict[k]
                    else:
                        print(k)
                        new_state_dict[k] = current_model_dict[k]
                msg = model.load_state_dict(new_state_dict, strict=False)
            else:
                msg = model.load_state_dict(ckpt['model'], strict=False)

        return model