File size: 4,000 Bytes
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import re

from medomni.common.registry import registry
from medomni.processors.base_processor import BaseProcessor
from medomni.processors.randaugment import RandomAugment
from omegaconf import OmegaConf
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode


class BlipImageBaseProcessor(BaseProcessor):
    def __init__(self, mean=None, std=None):
        if mean is None:
            mean = (0.48145466, 0.4578275, 0.40821073)
        if std is None:
            std = (0.26862954, 0.26130258, 0.27577711)

        self.normalize = transforms.Normalize(mean, std)


@registry.register_processor("blip_caption")
class BlipCaptionProcessor(BaseProcessor):
    def __init__(self, prompt="", max_words=50):
        self.prompt = prompt
        self.max_words = max_words

    def __call__(self, caption):
        caption = self.prompt + self.pre_caption(caption)

        return caption

    @classmethod
    def from_config(cls, cfg=None):
        if cfg is None:
            cfg = OmegaConf.create()

        prompt = cfg.get("prompt", "")
        max_words = cfg.get("max_words", 50)

        return cls(prompt=prompt, max_words=max_words)

    def pre_caption(self, caption):
        caption = re.sub(
            r"([.!\"()*#:;~])",
            " ",
            caption.lower(),
        )
        caption = re.sub(
            r"\s{2,}",
            " ",
            caption,
        )
        caption = caption.rstrip("\n")
        caption = caption.strip(" ")

        # truncate caption
        caption_words = caption.split(" ")
        if len(caption_words) > self.max_words:
            caption = " ".join(caption_words[: self.max_words])

        return caption


@registry.register_processor("blip2_image_train")
class Blip2ImageTrainProcessor(BlipImageBaseProcessor):
    def __init__(self, image_size=224, mean=None, std=None, min_scale=0.5, max_scale=1.0):
        super().__init__(mean=mean, std=std)

        self.transform = transforms.Compose(
            [
                transforms.RandomResizedCrop(
                    image_size,
                    scale=(min_scale, max_scale),
                    interpolation=InterpolationMode.BICUBIC,
                ),
                transforms.ToTensor(),
                self.normalize,
            ]
        )

    def __call__(self, item):
        return self.transform(item)

    @classmethod
    def from_config(cls, cfg=None):
        if cfg is None:
            cfg = OmegaConf.create()

        image_size = cfg.get("image_size", 224)

        mean = cfg.get("mean", None)
        std = cfg.get("std", None)

        min_scale = cfg.get("min_scale", 0.5)
        max_scale = cfg.get("max_scale", 1.0)

        return cls(
            image_size=image_size,
            mean=mean,
            std=std,
            min_scale=min_scale,
            max_scale=max_scale,
        )


@registry.register_processor("blip2_image_eval")
class Blip2ImageEvalProcessor(BlipImageBaseProcessor):
    def __init__(self, image_size=224, mean=None, std=None):
        super().__init__(mean=mean, std=std)

        self.transform = transforms.Compose(
            [
                transforms.Resize(
                    (image_size, image_size), interpolation=InterpolationMode.BICUBIC
                ),
                transforms.ToTensor(),
                self.normalize,
            ]
        )

    def __call__(self, item):
        return self.transform(item)

    @classmethod
    def from_config(cls, cfg=None):
        if cfg is None:
            cfg = OmegaConf.create()

        image_size = cfg.get("image_size", 224)

        mean = cfg.get("mean", None)
        std = cfg.get("std", None)

        return cls(image_size=image_size, mean=mean, std=std)