File size: 13,344 Bytes
cca9b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import torch
import torch.nn.functional as F
from torch import nn as nn
from torch.autograd import Variable
from torch.nn import MSELoss, SmoothL1Loss, L1Loss
from pytorch3dunet.unet3d.utils import expand_as_one_hot
def compute_per_channel_dice(input, target, epsilon=1e-6, weight=None):
"""
Computes DiceCoefficient as defined in https://arxiv.org/abs/1606.04797 given a multi channel input and target.
Assumes the input is a normalized probability, e.g. a result of Sigmoid or Softmax function.
Args:
input (torch.Tensor): NxCxSpatial input tensor
target (torch.Tensor): NxCxSpatial target tensor
epsilon (float): prevents division by zero
weight (torch.Tensor): Cx1 tensor of weight per channel/class
"""
# input and target shapes must match
assert input.size() == target.size(), "'input' and 'target' must have the same shape"
input = flatten(input)
target = flatten(target)
target = target.float()
# compute per channel Dice Coefficient
intersect = (input * target).sum(-1)
if weight is not None:
intersect = weight * intersect
# here we can use standard dice (input + target).sum(-1) or extension (see V-Net) (input^2 + target^2).sum(-1)
denominator = (input * input).sum(-1) + (target * target).sum(-1)
return 2 * (intersect / denominator.clamp(min=epsilon))
class _MaskingLossWrapper(nn.Module):
"""
Loss wrapper which prevents the gradient of the loss to be computed where target is equal to `ignore_index`.
"""
def __init__(self, loss, ignore_index):
super(_MaskingLossWrapper, self).__init__()
assert ignore_index is not None, 'ignore_index cannot be None'
self.loss = loss
self.ignore_index = ignore_index
def forward(self, input, target):
mask = target.clone().ne_(self.ignore_index)
mask.requires_grad = False
# mask out input/target so that the gradient is zero where on the mask
input = input * mask
target = target * mask
# forward masked input and target to the loss
return self.loss(input, target)
class SkipLastTargetChannelWrapper(nn.Module):
"""
Loss wrapper which removes additional target channel
"""
def __init__(self, loss, squeeze_channel=False):
super(SkipLastTargetChannelWrapper, self).__init__()
self.loss = loss
self.squeeze_channel = squeeze_channel
def forward(self, input, target):
assert target.size(1) > 1, 'Target tensor has a singleton channel dimension, cannot remove channel'
# skips last target channel if needed
target = target[:, :-1, ...]
if self.squeeze_channel:
# squeeze channel dimension if singleton
target = torch.squeeze(target, dim=1)
return self.loss(input, target)
class _AbstractDiceLoss(nn.Module):
"""
Base class for different implementations of Dice loss.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super(_AbstractDiceLoss, self).__init__()
self.register_buffer('weight', weight)
# The output from the network during training is assumed to be un-normalized probabilities and we would
# like to normalize the logits. Since Dice (or soft Dice in this case) is usually used for binary data,
# normalizing the channels with Sigmoid is the default choice even for multi-class segmentation problems.
# However if one would like to apply Softmax in order to get the proper probability distribution from the
# output, just specify `normalization=Softmax`
assert normalization in ['sigmoid', 'softmax', 'none']
if normalization == 'sigmoid':
self.normalization = nn.Sigmoid()
elif normalization == 'softmax':
self.normalization = nn.Softmax(dim=1)
else:
self.normalization = lambda x: x
def dice(self, input, target, weight):
# actual Dice score computation; to be implemented by the subclass
raise NotImplementedError
def forward(self, input, target):
# get probabilities from logits
input = self.normalization(input)
# compute per channel Dice coefficient
per_channel_dice = self.dice(input, target, weight=self.weight)
# average Dice score across all channels/classes
return 1. - torch.mean(per_channel_dice)
class DiceLoss(_AbstractDiceLoss):
"""Computes Dice Loss according to https://arxiv.org/abs/1606.04797.
For multi-class segmentation `weight` parameter can be used to assign different weights per class.
The input to the loss function is assumed to be a logit and will be normalized by the Sigmoid function.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super().__init__(weight, normalization)
def dice(self, input, target, weight):
return compute_per_channel_dice(input, target, weight=self.weight)
class GeneralizedDiceLoss(_AbstractDiceLoss):
"""Computes Generalized Dice Loss (GDL) as described in https://arxiv.org/pdf/1707.03237.pdf.
"""
def __init__(self, normalization='sigmoid', epsilon=1e-6):
super().__init__(weight=None, normalization=normalization)
self.epsilon = epsilon
def dice(self, input, target, weight):
assert input.size() == target.size(), "'input' and 'target' must have the same shape"
input = flatten(input)
target = flatten(target)
target = target.float()
if input.size(0) == 1:
# for GDL to make sense we need at least 2 channels (see https://arxiv.org/pdf/1707.03237.pdf)
# put foreground and background voxels in separate channels
input = torch.cat((input, 1 - input), dim=0)
target = torch.cat((target, 1 - target), dim=0)
# GDL weighting: the contribution of each label is corrected by the inverse of its volume
w_l = target.sum(-1)
w_l = 1 / (w_l * w_l).clamp(min=self.epsilon)
w_l.requires_grad = False
intersect = (input * target).sum(-1)
intersect = intersect * w_l
denominator = (input + target).sum(-1)
denominator = (denominator * w_l).clamp(min=self.epsilon)
return 2 * (intersect.sum() / denominator.sum())
class BCEDiceLoss(nn.Module):
"""Linear combination of BCE and Dice losses"""
def __init__(self, alpha, beta):
super(BCEDiceLoss, self).__init__()
self.alpha = alpha
self.bce = nn.BCEWithLogitsLoss()
self.beta = beta
self.dice = DiceLoss()
def forward(self, input, target):
return self.alpha * self.bce(input, target) + self.beta * self.dice(input, target)
class WeightedCrossEntropyLoss(nn.Module):
"""WeightedCrossEntropyLoss (WCE) as described in https://arxiv.org/pdf/1707.03237.pdf
"""
def __init__(self, ignore_index=-1):
super(WeightedCrossEntropyLoss, self).__init__()
self.ignore_index = ignore_index
def forward(self, input, target):
weight = self._class_weights(input)
return F.cross_entropy(input, target, weight=weight, ignore_index=self.ignore_index)
@staticmethod
def _class_weights(input):
# normalize the input first
input = F.softmax(input, dim=1)
flattened = flatten(input)
nominator = (1. - flattened).sum(-1)
denominator = flattened.sum(-1)
class_weights = Variable(nominator / denominator, requires_grad=False)
return class_weights
class PixelWiseCrossEntropyLoss(nn.Module):
def __init__(self, class_weights=None, ignore_index=None):
super(PixelWiseCrossEntropyLoss, self).__init__()
self.register_buffer('class_weights', class_weights)
self.ignore_index = ignore_index
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, input, target, weights):
assert target.size() == weights.size()
# normalize the input
log_probabilities = self.log_softmax(input)
# standard CrossEntropyLoss requires the target to be (NxDxHxW), so we need to expand it to (NxCxDxHxW)
target = expand_as_one_hot(target, C=input.size()[1], ignore_index=self.ignore_index)
# expand weights
weights = weights.unsqueeze(1)
weights = weights.expand_as(input)
# create default class_weights if None
if self.class_weights is None:
class_weights = torch.ones(input.size()[1]).float().cuda()
else:
class_weights = self.class_weights
# resize class_weights to be broadcastable into the weights
class_weights = class_weights.view(1, -1, 1, 1, 1)
# multiply weights tensor by class weights
weights = class_weights * weights
# compute the losses
result = -weights * target * log_probabilities
# average the losses
return result.mean()
class WeightedSmoothL1Loss(nn.SmoothL1Loss):
def __init__(self, threshold, initial_weight, apply_below_threshold=True):
super().__init__(reduction="none")
self.threshold = threshold
self.apply_below_threshold = apply_below_threshold
self.weight = initial_weight
def forward(self, input, target):
l1 = super().forward(input, target)
if self.apply_below_threshold:
mask = target < self.threshold
else:
mask = target >= self.threshold
l1[mask] = l1[mask] * self.weight
return l1.mean()
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
# number of channels
C = tensor.size(1)
# new axis order
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
# Transpose: (N, C, D, H, W) -> (C, N, D, H, W)
transposed = tensor.permute(axis_order)
# Flatten: (C, N, D, H, W) -> (C, N * D * H * W)
return transposed.contiguous().view(C, -1)
def get_loss_criterion(config):
"""
Returns the loss function based on provided configuration
:param config: (dict) a top level configuration object containing the 'loss' key
:return: an instance of the loss function
"""
assert 'loss' in config, 'Could not find loss function configuration'
loss_config = config['loss']
name = loss_config.pop('name')
ignore_index = loss_config.pop('ignore_index', None)
skip_last_target = loss_config.pop('skip_last_target', False)
weight = loss_config.pop('weight', None)
if weight is not None:
weight = torch.tensor(weight)
pos_weight = loss_config.pop('pos_weight', None)
if pos_weight is not None:
pos_weight = torch.tensor(pos_weight)
loss = _create_loss(name, loss_config, weight, ignore_index, pos_weight)
if not (ignore_index is None or name in ['CrossEntropyLoss', 'WeightedCrossEntropyLoss']):
# use MaskingLossWrapper only for non-cross-entropy losses, since CE losses allow specifying 'ignore_index' directly
loss = _MaskingLossWrapper(loss, ignore_index)
if skip_last_target:
loss = SkipLastTargetChannelWrapper(loss, loss_config.get('squeeze_channel', False))
if torch.cuda.is_available():
loss = loss.cuda()
return loss
#######################################################################################################################
def _create_loss(name, loss_config, weight, ignore_index, pos_weight):
if name == 'BCEWithLogitsLoss':
return nn.BCEWithLogitsLoss(pos_weight=pos_weight)
elif name == 'BCEDiceLoss':
alpha = loss_config.get('alphs', 1.)
beta = loss_config.get('beta', 1.)
return BCEDiceLoss(alpha, beta)
elif name == 'CrossEntropyLoss':
if ignore_index is None:
ignore_index = -100 # use the default 'ignore_index' as defined in the CrossEntropyLoss
return nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index)
elif name == 'WeightedCrossEntropyLoss':
if ignore_index is None:
ignore_index = -100 # use the default 'ignore_index' as defined in the CrossEntropyLoss
return WeightedCrossEntropyLoss(ignore_index=ignore_index)
elif name == 'PixelWiseCrossEntropyLoss':
return PixelWiseCrossEntropyLoss(class_weights=weight, ignore_index=ignore_index)
elif name == 'GeneralizedDiceLoss':
normalization = loss_config.get('normalization', 'sigmoid')
return GeneralizedDiceLoss(normalization=normalization)
elif name == 'DiceLoss':
normalization = loss_config.get('normalization', 'sigmoid')
return DiceLoss(weight=weight, normalization=normalization)
elif name == 'MSELoss':
return MSELoss()
elif name == 'SmoothL1Loss':
return SmoothL1Loss()
elif name == 'L1Loss':
return L1Loss()
elif name == 'WeightedSmoothL1Loss':
return WeightedSmoothL1Loss(threshold=loss_config['threshold'],
initial_weight=loss_config['initial_weight'],
apply_below_threshold=loss_config.get('apply_below_threshold', True))
else:
raise RuntimeError(f"Unsupported loss function: '{name}'")
|