File size: 10,126 Bytes
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch.nn as nn

from medomni.models.unet3d.buildingblocks import DoubleConv, ResNetBlock, ResNetBlockSE, \
    create_decoders, create_encoders
from medomni.models.unet3d.utils import get_class, number_of_features_per_level
import ipdb


class AbstractUNet(nn.Module):
    """
    Base class for standard and residual UNet.

    Args:
        in_channels (int): number of input channels
        out_channels (int): number of output segmentation masks;
            Note that the of out_channels might correspond to either
            different semantic classes or to different binary segmentation mask.
            It's up to the user of the class to interpret the out_channels and
            use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class)
            or BCEWithLogitsLoss (two-class) respectively)
        f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number
            of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4
        final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution,
            otherwise apply nn.Softmax. In effect only if `self.training == False`, i.e. during validation/testing
        basic_module: basic model for the encoder/decoder (DoubleConv, ResNetBlock, ....)
        layer_order (string): determines the order of layers in `SingleConv` module.
            E.g. 'crg' stands for GroupNorm3d+Conv3d+ReLU. See `SingleConv` for more info
        num_groups (int): number of groups for the GroupNorm
        num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int)
            default: 4
        is_segmentation (bool): if True and the model is in eval mode, Sigmoid/Softmax normalization is applied
            after the final convolution; if False (regression problem) the normalization layer is skipped
        conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module
        pool_kernel_size (int or tuple): the size of the window
        conv_padding (int or tuple): add zero-padding added to all three sides of the input
        is3d (bool): if True the model is 3D, otherwise 2D, default: True
    """

    def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr',
                 num_groups=8, num_levels=4, is_segmentation=True, conv_kernel_size=3, pool_kernel_size=2,
                 conv_padding=1, is3d=True):
        super(AbstractUNet, self).__init__()

        if isinstance(f_maps, int):
            f_maps = number_of_features_per_level(f_maps, num_levels=num_levels)

        assert isinstance(f_maps, list) or isinstance(f_maps, tuple)
        assert len(f_maps) > 1, "Required at least 2 levels in the U-Net"
        if 'g' in layer_order:
            assert num_groups is not None, "num_groups must be specified if GroupNorm is used"

        # create encoder path
        self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, conv_padding, layer_order,
                                        num_groups, pool_kernel_size, is3d)

        # create decoder path
        self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups,
                                        is3d)

        # in the last layer a 1×1 convolution reduces the number of output channels to the number of labels
        if is3d:
            self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1)
        else:
            self.final_conv = nn.Conv2d(f_maps[0], out_channels, 1)

        if is_segmentation:
            # semantic segmentation problem
            if final_sigmoid:
                self.final_activation = nn.Sigmoid()
            else:
                self.final_activation = nn.Softmax(dim=1)
        else:
            # regression problem
            self.final_activation = None

    def forward(self, x):
        # encoder part
        encoders_features = []
        for encoder in self.encoders:
            x = encoder(x)
            # reverse the encoder outputs to be aligned with the decoder
            encoders_features.insert(0, x)

        # remove the last encoder's output from the list
        # !!remember: it's the 1st in the list
        encoders_features = encoders_features[1:]

        # decoder part
        for decoder, encoder_features in zip(self.decoders, encoders_features):
            # pass the output from the corresponding encoder and the output
            # of the previous decoder
            x = decoder(encoder_features, x)

        x = self.final_conv(x)

        # apply final_activation (i.e. Sigmoid or Softmax) only during prediction.
        # During training the network outputs logits
        if not self.training and self.final_activation is not None:
            x = self.final_activation(x)

        return x


class UNet3D(AbstractUNet):
    """
    3DUnet model from
    `"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation"
        <https://arxiv.org/pdf/1606.06650.pdf>`.

    Uses `DoubleConv` as a basic_module and nearest neighbor upsampling in the decoder
    """

    def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr',
                 num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs):
        super(UNet3D, self).__init__(in_channels=in_channels,
                                     out_channels=out_channels,
                                     final_sigmoid=final_sigmoid,
                                     basic_module=DoubleConv,
                                     f_maps=f_maps,
                                     layer_order=layer_order,
                                     num_groups=num_groups,
                                     num_levels=num_levels,
                                     is_segmentation=is_segmentation,
                                     conv_padding=conv_padding,
                                     is3d=True)


class ResidualUNet3D(AbstractUNet):
    """
    Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf.
    Uses ResNetBlock as a basic building block, summation joining instead
    of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts).
    Since the model effectively becomes a residual net, in theory it allows for deeper UNet.
    """

    def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr',
                 num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, **kwargs):
        super(ResidualUNet3D, self).__init__(in_channels=in_channels,
                                             out_channels=out_channels,
                                             final_sigmoid=final_sigmoid,
                                             basic_module=ResNetBlock,
                                             f_maps=f_maps,
                                             layer_order=layer_order,
                                             num_groups=num_groups,
                                             num_levels=num_levels,
                                             is_segmentation=is_segmentation,
                                             conv_padding=conv_padding,
                                             is3d=True)


class ResidualUNetSE3D(AbstractUNet):
    """_summary_
    Residual 3DUnet model implementation with squeeze and excitation based on 
    https://arxiv.org/pdf/1706.00120.pdf.
    Uses ResNetBlockSE as a basic building block, summation joining instead
    of concatenation joining and transposed convolutions for upsampling (watch
    out for block artifacts). Since the model effectively becomes a residual
    net, in theory it allows for deeper UNet.
    """

    def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr',
                 num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, **kwargs):
        super(ResidualUNetSE3D, self).__init__(in_channels=in_channels,
                                               out_channels=out_channels,
                                               final_sigmoid=final_sigmoid,
                                               basic_module=ResNetBlockSE,
                                               f_maps=f_maps,
                                               layer_order=layer_order,
                                               num_groups=num_groups,
                                               num_levels=num_levels,
                                               is_segmentation=is_segmentation,
                                               conv_padding=conv_padding,
                                               is3d=True)


class UNet2D(AbstractUNet):
    """
    2DUnet model from
    `"U-Net: Convolutional Networks for Biomedical Image Segmentation" <https://arxiv.org/abs/1505.04597>`
    """

    def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr',
                 num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs):
        super(UNet2D, self).__init__(in_channels=in_channels,
                                     out_channels=out_channels,
                                     final_sigmoid=final_sigmoid,
                                     basic_module=DoubleConv,
                                     f_maps=f_maps,
                                     layer_order=layer_order,
                                     num_groups=num_groups,
                                     num_levels=num_levels,
                                     is_segmentation=is_segmentation,
                                     conv_padding=conv_padding,
                                     is3d=False)


def get_model(model_config):
    model_class = get_class(model_config['name'], modules=[
        'pytorch3dunet.unet3d.model'
    ])
    return model_class(**model_config)