|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
from peft import LoraConfig, get_peft_model |
|
import ipdb |
|
|
|
from medomni.common.dist_utils import download_cached_file |
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), |
|
**kwargs |
|
} |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return 'p={}'.format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
|
|
|
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., window_size=None, attn_head_dim=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
if window_size: |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, num_heads)) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = \ |
|
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
else: |
|
self.window_size = None |
|
self.relative_position_bias_table = None |
|
self.relative_position_index = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, rel_pos_bias=None): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
if self.relative_position_bias_table is not None: |
|
relative_position_bias = \ |
|
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1] + 1, |
|
self.window_size[0] * self.window_size[1] + 1, -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if rel_pos_bias is not None: |
|
attn = attn + rel_pos_bias |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
window_size=None, attn_head_dim=None): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if init_values is not None and init_values > 0: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x, rel_pos_bias=None): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x, **kwargs): |
|
B, C, H, W = x.shape |
|
|
|
assert H == self.img_size[0] and W == self.img_size[1], \ |
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class RelativePositionBias(nn.Module): |
|
|
|
def __init__(self, window_size, num_heads): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros(self.num_relative_distance, num_heads)) |
|
|
|
|
|
|
|
coords_h = torch.arange(window_size[0]) |
|
coords_w = torch.arange(window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += window_size[0] - 1 |
|
relative_coords[:, :, 1] += window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 |
|
relative_position_index = \ |
|
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) |
|
relative_position_index[1:, 1:] = relative_coords.sum(-1) |
|
relative_position_index[0, 0:] = self.num_relative_distance - 3 |
|
relative_position_index[0:, 0] = self.num_relative_distance - 2 |
|
relative_position_index[0, 0] = self.num_relative_distance - 1 |
|
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
|
|
|
|
def forward(self): |
|
relative_position_bias = \ |
|
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1] + 1, |
|
self.window_size[0] * self.window_size[1] + 1, -1) |
|
return relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, |
|
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, |
|
use_mean_pooling=True, init_scale=0.001, use_checkpoint=False): |
|
super().__init__() |
|
self.image_size = img_size |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
if use_abs_pos_emb: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
else: |
|
self.pos_embed = None |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
if use_shared_rel_pos_bias: |
|
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) |
|
else: |
|
self.rel_pos_bias = None |
|
self.use_checkpoint = use_checkpoint |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.use_rel_pos_bias = use_rel_pos_bias |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) |
|
for i in range(depth)]) |
|
|
|
|
|
|
|
|
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
self.fix_init_weight() |
|
|
|
|
|
|
|
|
|
def fix_init_weight(self): |
|
def rescale(param, layer_id): |
|
param.div_(math.sqrt(2.0 * layer_id)) |
|
|
|
for layer_id, layer in enumerate(self.blocks): |
|
rescale(layer.attn.proj.weight.data, layer_id + 1) |
|
rescale(layer.mlp.fc2.weight.data, layer_id + 1) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
batch_size, seq_len, _ = x.size() |
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, rel_pos_bias) |
|
else: |
|
x = blk(x, rel_pos_bias) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
return x |
|
|
|
def get_intermediate_layers(self, x): |
|
x = self.patch_embed(x) |
|
batch_size, seq_len, _ = x.size() |
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
|
|
features = [] |
|
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None |
|
for blk in self.blocks: |
|
x = blk(x, rel_pos_bias) |
|
features.append(x) |
|
|
|
return features |
|
|
|
|
|
def interpolate_pos_embed(model, checkpoint_model): |
|
if 'pos_embed' in checkpoint_model: |
|
pos_embed_checkpoint = checkpoint_model['pos_embed'].float() |
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
num_patches = model.patch_embed.num_patches |
|
num_extra_tokens = model.pos_embed.shape[-2] - num_patches |
|
|
|
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) |
|
|
|
new_size = int(num_patches ** 0.5) |
|
|
|
if orig_size != new_size: |
|
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|
pos_tokens = torch.nn.functional.interpolate( |
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
checkpoint_model['pos_embed'] = new_pos_embed |
|
|
|
|
|
def convert_weights_to_fp16(model: nn.Module): |
|
"""Convert applicable model parameters to fp16""" |
|
|
|
def _convert_weights_to_fp16(l): |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): |
|
l.weight.data = l.weight.data.half() |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.half() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.apply(_convert_weights_to_fp16) |
|
|
|
|
|
def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp16"): |
|
model = VisionTransformer( |
|
img_size=img_size, |
|
patch_size=14, |
|
use_mean_pooling=False, |
|
embed_dim=1408, |
|
depth=39, |
|
num_heads=1408//88, |
|
mlp_ratio=4.3637, |
|
qkv_bias=True, |
|
drop_path_rate=drop_path_rate, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
use_checkpoint=use_checkpoint, |
|
) |
|
url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth" |
|
cached_file = download_cached_file( |
|
url, check_hash=False, progress=True |
|
) |
|
state_dict = torch.load(cached_file, map_location="cpu") |
|
interpolate_pos_embed(model,state_dict) |
|
|
|
incompatible_keys = model.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if precision == "fp16": |
|
|
|
convert_weights_to_fp16(model) |
|
return model |