whisper-SER-base-v7(skip_special_tokens=True during and lr = 1e-05 steps = 12k ,warmup = 500)
This model is a fine-tuned version of openai/whisper-base on the Whisper_Compatible_SER_benchmark + enhanced_facebook_voxpopulik_16k_Whisper_Compatible dataset. It achieves the following results on the evaluation set:
- Loss: 0.0978
- Wer: 56.9573
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 12000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3141 | 0.5510 | 1000 | 0.3218 | 42.8881 |
0.1626 | 1.1019 | 2000 | 0.2021 | 58.5652 |
0.1553 | 1.6529 | 3000 | 0.1462 | 87.1676 |
0.1091 | 2.2039 | 4000 | 0.1199 | 63.8528 |
0.1069 | 2.7548 | 5000 | 0.1027 | 63.3271 |
0.042 | 3.3058 | 6000 | 0.0958 | 66.8831 |
0.0434 | 3.8567 | 7000 | 0.0935 | 77.2418 |
0.0254 | 4.4077 | 8000 | 0.0926 | 64.4712 |
0.0265 | 4.9587 | 9000 | 0.0939 | 59.9876 |
0.0136 | 5.5096 | 10000 | 0.0955 | 58.2870 |
0.009 | 6.0606 | 11000 | 0.0985 | 62.9561 |
0.0067 | 6.6116 | 12000 | 0.0978 | 56.9573 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for iFaz/whisper-SER-base-v7
Base model
openai/whisper-baseDataset used to train iFaz/whisper-SER-base-v7
Evaluation results
- Wer on Whisper_Compatible_SER_benchmark + enhanced_facebook_voxpopulik_16k_Whisper_Compatibleself-reported56.957