whisper-SER-base-v7(skip_special_tokens=True during and lr = 1e-05 steps = 12k ,warmup = 500)

This model is a fine-tuned version of openai/whisper-base on the Whisper_Compatible_SER_benchmark + enhanced_facebook_voxpopulik_16k_Whisper_Compatible dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0978
  • Wer: 56.9573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3141 0.5510 1000 0.3218 42.8881
0.1626 1.1019 2000 0.2021 58.5652
0.1553 1.6529 3000 0.1462 87.1676
0.1091 2.2039 4000 0.1199 63.8528
0.1069 2.7548 5000 0.1027 63.3271
0.042 3.3058 6000 0.0958 66.8831
0.0434 3.8567 7000 0.0935 77.2418
0.0254 4.4077 8000 0.0926 64.4712
0.0265 4.9587 9000 0.0939 59.9876
0.0136 5.5096 10000 0.0955 58.2870
0.009 6.0606 11000 0.0985 62.9561
0.0067 6.6116 12000 0.0978 56.9573

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
17
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for iFaz/whisper-SER-base-v7

Finetuned
(430)
this model

Dataset used to train iFaz/whisper-SER-base-v7

Evaluation results

  • Wer on Whisper_Compatible_SER_benchmark + enhanced_facebook_voxpopulik_16k_Whisper_Compatible
    self-reported
    56.957