whisper-base-SER-v5_1

This fine-tune is corrupted (because i used mistakenly only 100 rows for training๐Ÿ˜‘๐Ÿ˜‘๐Ÿ˜‘

image/png ) This model is a fine-tuned version of openai/whisper-base on the Whisper_Compatible_SER_benchmark(Not train_augmented) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3675
  • Wer: 236.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0004 250.0 1000 0.2744 665.0
0.0001 500.0 2000 0.3142 413.0
0.0 750.0 3000 0.3356 239.0
0.0 1000.0 4000 0.3451 239.0
0.0 1250.0 5000 0.3657 236.0
0.0 1500.0 6000 0.3675 236.0

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
14
Safetensors
Model size
72.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for iFaz/whisper-base-SER-v5_2

Finetuned
(430)
this model

Dataset used to train iFaz/whisper-base-SER-v5_2

Evaluation results

  • Wer on Whisper_Compatible_SER_benchmark(Not train_augmented)
    self-reported
    236.000