metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- iFaz/common_voice_17_0_emotion_5k
metrics:
- wer
model-index:
- name: whisper-base-en-emo-v1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0(Emotional Tag)
type: iFaz/common_voice_17_0_emotion_5k
args: 'config: bn, split: test'
metrics:
- name: Wer
type: wer
value: 120.10050251256281
whisper-base-en-emo-v1
This model is a fine-tuned version of openai/whisper-base on the Common Voice 17.0(Emotional Tag) dataset. It achieves the following results on the evaluation set:
- Loss: 0.9660
- Wer: 120.1005
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0074 | 40.0 | 1000 | 0.8128 | 130.1508 |
0.0002 | 80.0 | 2000 | 0.9065 | 114.5729 |
0.0001 | 120.0 | 3000 | 0.9507 | 109.0452 |
0.0001 | 160.0 | 4000 | 0.9660 | 120.1005 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0