|
--- |
|
license: llama2 |
|
--- |
|
|
|
## Installation from source |
|
|
|
```bash |
|
git clone https://github.com/foundation-model-stack/fms-extras |
|
cd fms-extras |
|
pip install -e . |
|
``` |
|
|
|
|
|
## Description |
|
|
|
This model is intended to be used as an accelerator for [llama 13B (chat)](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) and takes inspiration |
|
from the Medusa speculative decoding architecture. This accelerator modifies the MLP into a multi-stage MLP, where each stage predicts |
|
a single token in the draft based on both a state vector and sampled token |
|
from the prior stage (the base model can be considered stage 0). |
|
The state vector from the base model provides contextual information to the accelerator, |
|
while conditioning on prior sampled tokens allows it to produce higher-quality draft n-grams. |
|
|
|
Note: The underlying MLP speculator is a generic architecture that can be trained with any generative model to accelerate inference. |
|
Training is light-weight and can be completed in only a few days depending on base model size and speed. |
|
|
|
## Repository Links |
|
|
|
1. [Paged Attention KV-Cache / Speculator](https://github.com/foundation-model-stack/fms-extras) |
|
2. [Production Server with speculative decoding](https://github.com/IBM/text-generation-inference.git) |
|
3. [Speculator training](https://github.com/foundation-model-stack/fms-fsdp/pull/35) |
|
|
|
## Samples |
|
|
|
_Note: For all samples, your environment must have access to cuda_ |
|
|
|
### Production Server Sample |
|
|
|
*To try this out running in a production-like environment, please use the pre-built docker image:* |
|
|
|
#### Setup |
|
|
|
```bash |
|
HF_HUB_CACHE=/hf_hub_cache |
|
HF_HUB_TOKEN="your huggingface hub token" |
|
TGIS_IMAGE=quay.io/wxpe/text-gen-server:main.ee927a4 |
|
|
|
docker pull $TGIS_IMAGE |
|
|
|
# optionally download llama-2-13b-chat if the weights do not already exist |
|
docker run --rm \ |
|
-v $HF_HUB_CACHE:/models \ |
|
-e HF_HUB_CACHE=/models \ |
|
-e TRANSFORMERS_CACHE=/models \ |
|
$TGIS_IMAGE \ |
|
text-generation-server download-weights \ |
|
meta-llama/Llama-2-13b-chat-hf \ |
|
--token $HF_HUB_TOKEN |
|
|
|
# optionally download the speculator model if the weights do not already exist |
|
docker run --rm \ |
|
-v $HF_HUB_CACHE:/models \ |
|
-e HF_HUB_CACHE=/models \ |
|
-e TRANSFORMERS_CACHE=/models \ |
|
$TGIS_IMAGE \ |
|
text-generation-server download-weights \ |
|
ibm-fms/llama-13b-accelerator \ |
|
--token $HF_HUB_TOKEN |
|
|
|
# note: if the weights were downloaded separately (not with the above commands), please place them in the HF_HUB_CACHE directoy and refer to them with /models/<model_name> |
|
docker run -d --rm --gpus all \ |
|
--name my-tgis-server \ |
|
-p 8033:8033 \ |
|
-v $HF_HUB_CACHE:/models \ |
|
-e HF_HUB_CACHE=/models \ |
|
-e TRANSFORMERS_CACHE=/models \ |
|
-e MODEL_NAME=meta-llama/Llama-2-13b-chat-hf \ |
|
-e SPECULATOR_NAME=ibm-fms/llama-13b-accelerator \ |
|
-e FLASH_ATTENTION=true \ |
|
-e PAGED_ATTENTION=true \ |
|
-e DTYPE=float16 \ |
|
$TGIS_IMAGE |
|
|
|
# check logs and wait for "gRPC server started on port 8033" and "HTTP server started on port 3000" |
|
docker logs my-tgis-server -f |
|
|
|
# get the client sample (Note: The first prompt will take longer as there is a warmup time) |
|
conda create -n tgis-client-env python=3.11 |
|
conda activate tgis-client-env |
|
git clone --branch main --single-branch https://github.com/IBM/text-generation-inference.git |
|
cd text-generation-inference/integration_tests |
|
make gen-client |
|
pip install . --no-cache-dir |
|
``` |
|
|
|
#### Run Sample |
|
|
|
```bash |
|
python sample_client.py |
|
``` |
|
|
|
_Note: first prompt may be slower as there is a slight warmup time_ |
|
|
|
### Minimal Sample |
|
|
|
*To try this out with the fms-native compiled model, please execute the following:* |
|
|
|
#### Install |
|
|
|
```bash |
|
git clone https://github.com/foundation-model-stack/fms-extras |
|
(cd fms-extras && pip install -e .) |
|
pip install transformers==4.35.0 sentencepiece numpy |
|
``` |
|
|
|
#### Run Sample |
|
|
|
##### batch_size=1 (compile + cudagraphs) |
|
|
|
```bash |
|
MODEL_PATH=/path/to/llama/hf/13B-F |
|
python fms-extras/scripts/paged_speculative_inference.py \ |
|
--variant=13b \ |
|
--model_path=$MODEL_PATH \ |
|
--model_source=hf \ |
|
--tokenizer=$MODEL_PATH \ |
|
--speculator_path=ibm-fms/llama-13b-accelerator \ |
|
--speculator_source=hf \ |
|
--compile \ |
|
--compile_mode=reduce-overhead |
|
``` |
|
|
|
##### batch_size=1 (compile) |
|
|
|
```bash |
|
MODEL_PATH=/path/to/llama/hf/13B-F |
|
python fms-extras/scripts/paged_speculative_inference.py \ |
|
--variant=13b \ |
|
--model_path=$MODEL_PATH \ |
|
--model_source=hf \ |
|
--tokenizer=$MODEL_PATH \ |
|
--speculator_path=ibm-fms/llama-13b-accelerator \ |
|
--speculator_source=hf \ |
|
--compile \ |
|
``` |
|
|
|
##### batch_size=4 (compile) |
|
|
|
```bash |
|
MODEL_PATH=/path/to/llama/hf/13B-F |
|
python fms-extras/scripts/paged_speculative_inference.py \ |
|
--variant=13b \ |
|
--model_path=$MODEL_PATH \ |
|
--model_source=hf \ |
|
--tokenizer=$MODEL_PATH \ |
|
--speculator_path=ibm-fms/llama-13b-accelerator \ |
|
--speculator_source=hf \ |
|
--batch_input \ |
|
--compile \ |
|
``` |
|
|
|
Sample code can be found [here](https://github.com/foundation-model-stack/fms-extras/blob/main/scripts/paged_speculative_inference.py) |