ibibrahim's picture
Update README.md
26f3788 verified
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - language
  - granite
  - embeddings
model-index:
  - name: ibm-granite/granite-embedding-30m-english
    results:
      - dataset:
          type: mteb/arguana
          name: MTEB ArguaAna
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.31792
          - type: map_at_10
            value: 0.47599
          - type: map_at_100
            value: 0.48425
          - type: map_at_1000
            value: 0.48427
          - type: map_at_3
            value: 0.42757
          - type: map_at_5
            value: 0.45634
          - type: mrr_at_1
            value: 0.32788
          - type: mrr_at_10
            value: 0.47974
          - type: mrr_at_100
            value: 0.48801
          - type: mrr_at_1000
            value: 0.48802
          - type: mrr_at_3
            value: 0.43065
          - type: mrr_at_5
            value: 0.45999
          - type: ndcg_at_1
            value: 0.31792
          - type: ndcg_at_10
            value: 0.56356
          - type: ndcg_at_100
            value: 0.59789
          - type: ndcg_at_1000
            value: 0.59857
          - type: ndcg_at_3
            value: 0.46453
          - type: ndcg_at_5
            value: 0.51623
          - type: precision_at_1
            value: 0.31792
          - type: precision_at_10
            value: 0.08428
          - type: precision_at_100
            value: 0.00991
          - type: precision_at_1000
            value: 0.001
          - type: precision_at_3
            value: 0.19061
          - type: precision_at_5
            value: 0.1394
          - type: recall_at_1
            value: 0.31792
          - type: recall_at_10
            value: 0.84282
          - type: recall_at_100
            value: 0.99075
          - type: recall_at_1000
            value: 0.99644
          - type: recall_at_3
            value: 0.57183
          - type: recall_at_5
            value: 0.69701
      - dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.13189
          - type: map_at_10
            value: 0.21789
          - type: map_at_100
            value: 0.2358
          - type: map_at_1000
            value: 0.23772
          - type: map_at_3
            value: 0.18513
          - type: map_at_5
            value: 0.20212
          - type: mrr_at_1
            value: 0.29837
          - type: mrr_at_10
            value: 0.41376
          - type: mrr_at_100
            value: 0.42282
          - type: mrr_at_1000
            value: 0.42319
          - type: mrr_at_3
            value: 0.38284
          - type: mrr_at_5
            value: 0.40301
          - type: ndcg_at_1
            value: 0.29837
          - type: ndcg_at_10
            value: 0.30263
          - type: ndcg_at_100
            value: 0.37228
          - type: ndcg_at_1000
            value: 0.40677
          - type: ndcg_at_3
            value: 0.25392
          - type: ndcg_at_5
            value: 0.27153
          - type: precision_at_1
            value: 0.29837
          - type: precision_at_10
            value: 0.09179
          - type: precision_at_100
            value: 0.01659
          - type: precision_at_1000
            value: 0.0023
          - type: precision_at_3
            value: 0.18545
          - type: precision_at_5
            value: 0.14241
          - type: recall_at_1
            value: 0.13189
          - type: recall_at_10
            value: 0.35355
          - type: recall_at_100
            value: 0.59255
          - type: recall_at_1000
            value: 0.78637
          - type: recall_at_3
            value: 0.23255
          - type: recall_at_5
            value: 0.28446
      - dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.35797
          - type: map_at_10
            value: 0.47793
          - type: map_at_100
            value: 0.49422
          - type: map_at_1000
            value: 0.49546
          - type: map_at_3
            value: 0.44137
          - type: map_at_5
            value: 0.46063
          - type: mrr_at_1
            value: 0.44206
          - type: mrr_at_10
            value: 0.53808
          - type: mrr_at_100
            value: 0.5454
          - type: mrr_at_1000
            value: 0.54578
          - type: mrr_at_3
            value: 0.51431
          - type: mrr_at_5
            value: 0.5284
          - type: ndcg_at_1
            value: 0.44206
          - type: ndcg_at_10
            value: 0.54106
          - type: ndcg_at_100
            value: 0.59335
          - type: ndcg_at_1000
            value: 0.61015
          - type: ndcg_at_3
            value: 0.49365
          - type: ndcg_at_5
            value: 0.51429
          - type: precision_at_1
            value: 0.44206
          - type: precision_at_10
            value: 0.10443
          - type: precision_at_100
            value: 0.01631
          - type: precision_at_1000
            value: 0.00214
          - type: precision_at_3
            value: 0.23653
          - type: precision_at_5
            value: 0.1691
          - type: recall_at_1
            value: 0.35797
          - type: recall_at_10
            value: 0.65182
          - type: recall_at_100
            value: 0.86654
          - type: recall_at_1000
            value: 0.97131
          - type: recall_at_3
            value: 0.51224
          - type: recall_at_5
            value: 0.57219
      - dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.32748
          - type: map_at_10
            value: 0.44138
          - type: map_at_100
            value: 0.45565
          - type: map_at_1000
            value: 0.45698
          - type: map_at_3
            value: 0.40916
          - type: map_at_5
            value: 0.42621
          - type: mrr_at_1
            value: 0.41274
          - type: mrr_at_10
            value: 0.5046
          - type: mrr_at_100
            value: 0.5107
          - type: mrr_at_1000
            value: 0.51109
          - type: mrr_at_3
            value: 0.48238
          - type: mrr_at_5
            value: 0.49563
          - type: ndcg_at_1
            value: 0.41274
          - type: ndcg_at_10
            value: 0.50251
          - type: ndcg_at_100
            value: 0.54725
          - type: ndcg_at_1000
            value: 0.56635
          - type: ndcg_at_3
            value: 0.46023
          - type: ndcg_at_5
            value: 0.47883
          - type: precision_at_1
            value: 0.41274
          - type: precision_at_10
            value: 0.09828
          - type: precision_at_100
            value: 0.01573
          - type: precision_at_1000
            value: 0.00202
          - type: precision_at_3
            value: 0.22718
          - type: precision_at_5
            value: 0.16064
          - type: recall_at_1
            value: 0.32748
          - type: recall_at_10
            value: 0.60322
          - type: recall_at_100
            value: 0.79669
          - type: recall_at_1000
            value: 0.9173
          - type: recall_at_3
            value: 0.47523
          - type: recall_at_5
            value: 0.52957
      - dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.41126
          - type: map_at_10
            value: 0.53661
          - type: map_at_100
            value: 0.54588
          - type: map_at_1000
            value: 0.54638
          - type: map_at_3
            value: 0.50389
          - type: map_at_5
            value: 0.52286
          - type: mrr_at_1
            value: 0.47147
          - type: mrr_at_10
            value: 0.5685
          - type: mrr_at_100
            value: 0.57458
          - type: mrr_at_1000
            value: 0.57487
          - type: mrr_at_3
            value: 0.54431
          - type: mrr_at_5
            value: 0.55957
          - type: ndcg_at_1
            value: 0.47147
          - type: ndcg_at_10
            value: 0.59318
          - type: ndcg_at_100
            value: 0.62972
          - type: ndcg_at_1000
            value: 0.64033
          - type: ndcg_at_3
            value: 0.53969
          - type: ndcg_at_5
            value: 0.56743
          - type: precision_at_1
            value: 0.47147
          - type: precision_at_10
            value: 0.09549
          - type: precision_at_100
            value: 0.01224
          - type: precision_at_1000
            value: 0.00135
          - type: precision_at_3
            value: 0.24159
          - type: precision_at_5
            value: 0.16577
          - type: recall_at_1
            value: 0.41126
          - type: recall_at_10
            value: 0.72691
          - type: recall_at_100
            value: 0.88692
          - type: recall_at_1000
            value: 0.96232
          - type: recall_at_3
            value: 0.58374
          - type: recall_at_5
            value: 0.65226
      - dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.28464
          - type: map_at_10
            value: 0.3828
          - type: map_at_100
            value: 0.39277
          - type: map_at_1000
            value: 0.39355
          - type: map_at_3
            value: 0.35704
          - type: map_at_5
            value: 0.37116
          - type: mrr_at_1
            value: 0.30734
          - type: mrr_at_10
            value: 0.40422
          - type: mrr_at_100
            value: 0.41297
          - type: mrr_at_1000
            value: 0.41355
          - type: mrr_at_3
            value: 0.38136
          - type: mrr_at_5
            value: 0.39362
          - type: ndcg_at_1
            value: 0.30734
          - type: ndcg_at_10
            value: 0.43564
          - type: ndcg_at_100
            value: 0.48419
          - type: ndcg_at_1000
            value: 0.50404
          - type: ndcg_at_3
            value: 0.38672
          - type: ndcg_at_5
            value: 0.40954
          - type: precision_at_1
            value: 0.30734
          - type: precision_at_10
            value: 0.06633
          - type: precision_at_100
            value: 0.00956
          - type: precision_at_1000
            value: 0.00116
          - type: precision_at_3
            value: 0.16497
          - type: precision_at_5
            value: 0.11254
          - type: recall_at_1
            value: 0.28464
          - type: recall_at_10
            value: 0.57621
          - type: recall_at_100
            value: 0.7966
          - type: recall_at_1000
            value: 0.94633
          - type: recall_at_3
            value: 0.44588
          - type: recall_at_5
            value: 0.50031
      - dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.18119
          - type: map_at_10
            value: 0.27055
          - type: map_at_100
            value: 0.28461
          - type: map_at_1000
            value: 0.28577
          - type: map_at_3
            value: 0.24341
          - type: map_at_5
            value: 0.25861
          - type: mrr_at_1
            value: 0.22886
          - type: mrr_at_10
            value: 0.32234
          - type: mrr_at_100
            value: 0.3328
          - type: mrr_at_1000
            value: 0.3334
          - type: mrr_at_3
            value: 0.29664
          - type: mrr_at_5
            value: 0.31107
          - type: ndcg_at_1
            value: 0.22886
          - type: ndcg_at_10
            value: 0.32749
          - type: ndcg_at_100
            value: 0.39095
          - type: ndcg_at_1000
            value: 0.41656
          - type: ndcg_at_3
            value: 0.27864
          - type: ndcg_at_5
            value: 0.30177
          - type: precision_at_1
            value: 0.22886
          - type: precision_at_10
            value: 0.06169
          - type: precision_at_100
            value: 0.0107
          - type: precision_at_1000
            value: 0.00143
          - type: precision_at_3
            value: 0.13682
          - type: precision_at_5
            value: 0.0995
          - type: recall_at_1
            value: 0.18119
          - type: recall_at_10
            value: 0.44983
          - type: recall_at_100
            value: 0.72396
          - type: recall_at_1000
            value: 0.90223
          - type: recall_at_3
            value: 0.31633
          - type: recall_at_5
            value: 0.37532
      - dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.30517
          - type: map_at_10
            value: 0.42031
          - type: map_at_100
            value: 0.43415
          - type: map_at_1000
            value: 0.43525
          - type: map_at_3
            value: 0.38443
          - type: map_at_5
            value: 0.40685
          - type: mrr_at_1
            value: 0.38114
          - type: mrr_at_10
            value: 0.47783
          - type: mrr_at_100
            value: 0.48647
          - type: mrr_at_1000
            value: 0.48688
          - type: mrr_at_3
            value: 0.45172
          - type: mrr_at_5
            value: 0.46817
          - type: ndcg_at_1
            value: 0.38114
          - type: ndcg_at_10
            value: 0.4834
          - type: ndcg_at_100
            value: 0.53861
          - type: ndcg_at_1000
            value: 0.55701
          - type: ndcg_at_3
            value: 0.42986
          - type: ndcg_at_5
            value: 0.45893
          - type: precision_at_1
            value: 0.38114
          - type: precision_at_10
            value: 0.08893
          - type: precision_at_100
            value: 0.01375
          - type: precision_at_1000
            value: 0.00172
          - type: precision_at_3
            value: 0.20821
          - type: precision_at_5
            value: 0.15034
          - type: recall_at_1
            value: 0.30517
          - type: recall_at_10
            value: 0.61332
          - type: recall_at_100
            value: 0.84051
          - type: recall_at_1000
            value: 0.95826
          - type: recall_at_3
            value: 0.46015
          - type: recall_at_5
            value: 0.53801
      - dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.27396
          - type: map_at_10
            value: 0.38043
          - type: map_at_100
            value: 0.39341
          - type: map_at_1000
            value: 0.39454
          - type: map_at_3
            value: 0.34783
          - type: map_at_5
            value: 0.3663
          - type: mrr_at_1
            value: 0.34247
          - type: mrr_at_10
            value: 0.43681
          - type: mrr_at_100
            value: 0.4451
          - type: mrr_at_1000
            value: 0.44569
          - type: mrr_at_3
            value: 0.41172
          - type: mrr_at_5
            value: 0.42702
          - type: ndcg_at_1
            value: 0.34247
          - type: ndcg_at_10
            value: 0.44065
          - type: ndcg_at_100
            value: 0.49434
          - type: ndcg_at_1000
            value: 0.51682
          - type: ndcg_at_3
            value: 0.38976
          - type: ndcg_at_5
            value: 0.41332
          - type: precision_at_1
            value: 0.34247
          - type: precision_at_10
            value: 0.08059
          - type: precision_at_100
            value: 0.01258
          - type: precision_at_1000
            value: 0.00162
          - type: precision_at_3
            value: 0.1876
          - type: precision_at_5
            value: 0.13333
          - type: recall_at_1
            value: 0.27396
          - type: recall_at_10
            value: 0.56481
          - type: recall_at_100
            value: 0.79012
          - type: recall_at_1000
            value: 0.94182
          - type: recall_at_3
            value: 0.41785
          - type: recall_at_5
            value: 0.48303
      - dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.25728
          - type: map_at_10
            value: 0.33903
          - type: map_at_100
            value: 0.34853
          - type: map_at_1000
            value: 0.34944
          - type: map_at_3
            value: 0.31268
          - type: map_at_5
            value: 0.32596
          - type: mrr_at_1
            value: 0.29141
          - type: mrr_at_10
            value: 0.36739
          - type: mrr_at_100
            value: 0.37545
          - type: mrr_at_1000
            value: 0.37608
          - type: mrr_at_3
            value: 0.34407
          - type: mrr_at_5
            value: 0.3568
          - type: ndcg_at_1
            value: 0.29141
          - type: ndcg_at_10
            value: 0.38596
          - type: ndcg_at_100
            value: 0.43375
          - type: ndcg_at_1000
            value: 0.45562
          - type: ndcg_at_3
            value: 0.33861
          - type: ndcg_at_5
            value: 0.35887
          - type: precision_at_1
            value: 0.29141
          - type: precision_at_10
            value: 0.06334
          - type: precision_at_100
            value: 0.00952
          - type: precision_at_1000
            value: 0.00121
          - type: precision_at_3
            value: 0.14826
          - type: precision_at_5
            value: 0.10429
          - type: recall_at_1
            value: 0.25728
          - type: recall_at_10
            value: 0.50121
          - type: recall_at_100
            value: 0.72382
          - type: recall_at_1000
            value: 0.88306
          - type: recall_at_3
            value: 0.36638
          - type: recall_at_5
            value: 0.41689
      - dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.19911
          - type: map_at_10
            value: 0.2856
          - type: map_at_100
            value: 0.29785
          - type: map_at_1000
            value: 0.29911
          - type: map_at_3
            value: 0.25875
          - type: map_at_5
            value: 0.2741
          - type: mrr_at_1
            value: 0.24054
          - type: mrr_at_10
            value: 0.32483
          - type: mrr_at_100
            value: 0.33464
          - type: mrr_at_1000
            value: 0.33534
          - type: mrr_at_3
            value: 0.30162
          - type: mrr_at_5
            value: 0.31506
          - type: ndcg_at_1
            value: 0.24054
          - type: ndcg_at_10
            value: 0.33723
          - type: ndcg_at_100
            value: 0.39362
          - type: ndcg_at_1000
            value: 0.42065
          - type: ndcg_at_3
            value: 0.29116
          - type: ndcg_at_5
            value: 0.31299
          - type: precision_at_1
            value: 0.24054
          - type: precision_at_10
            value: 0.06194
          - type: precision_at_100
            value: 0.01058
          - type: precision_at_1000
            value: 0.00148
          - type: precision_at_3
            value: 0.13914
          - type: precision_at_5
            value: 0.10076
          - type: recall_at_1
            value: 0.19911
          - type: recall_at_10
            value: 0.45183
          - type: recall_at_100
            value: 0.7025
          - type: recall_at_1000
            value: 0.89222
          - type: recall_at_3
            value: 0.32195
          - type: recall_at_5
            value: 0.37852
      - dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.29819
          - type: map_at_10
            value: 0.40073
          - type: map_at_100
            value: 0.41289
          - type: map_at_1000
            value: 0.41375
          - type: map_at_3
            value: 0.36572
          - type: map_at_5
            value: 0.38386
          - type: mrr_at_1
            value: 0.35168
          - type: mrr_at_10
            value: 0.44381
          - type: mrr_at_100
            value: 0.45191
          - type: mrr_at_1000
            value: 0.45234
          - type: mrr_at_3
            value: 0.41402
          - type: mrr_at_5
            value: 0.43039
          - type: ndcg_at_1
            value: 0.35168
          - type: ndcg_at_10
            value: 0.46071
          - type: ndcg_at_100
            value: 0.51351
          - type: ndcg_at_1000
            value: 0.5317
          - type: ndcg_at_3
            value: 0.39972
          - type: ndcg_at_5
            value: 0.42586
          - type: precision_at_1
            value: 0.35168
          - type: precision_at_10
            value: 0.07985
          - type: precision_at_100
            value: 0.01185
          - type: precision_at_1000
            value: 0.00144
          - type: precision_at_3
            value: 0.18221
          - type: precision_at_5
            value: 0.12892
          - type: recall_at_1
            value: 0.29819
          - type: recall_at_10
            value: 0.60075
          - type: recall_at_100
            value: 0.82771
          - type: recall_at_1000
            value: 0.95219
          - type: recall_at_3
            value: 0.43245
          - type: recall_at_5
            value: 0.49931
      - dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.28409
          - type: map_at_10
            value: 0.37621
          - type: map_at_100
            value: 0.39233
          - type: map_at_1000
            value: 0.39471
          - type: map_at_3
            value: 0.34337
          - type: map_at_5
            value: 0.35985
          - type: mrr_at_1
            value: 0.33794
          - type: mrr_at_10
            value: 0.42349
          - type: mrr_at_100
            value: 0.43196
          - type: mrr_at_1000
            value: 0.43237
          - type: mrr_at_3
            value: 0.39526
          - type: mrr_at_5
            value: 0.41087
          - type: ndcg_at_1
            value: 0.33794
          - type: ndcg_at_10
            value: 0.43832
          - type: ndcg_at_100
            value: 0.49514
          - type: ndcg_at_1000
            value: 0.51742
          - type: ndcg_at_3
            value: 0.38442
          - type: ndcg_at_5
            value: 0.40737
          - type: precision_at_1
            value: 0.33794
          - type: precision_at_10
            value: 0.08597
          - type: precision_at_100
            value: 0.01652
          - type: precision_at_1000
            value: 0.00251
          - type: precision_at_3
            value: 0.17787
          - type: precision_at_5
            value: 0.13241
          - type: recall_at_1
            value: 0.28409
          - type: recall_at_10
            value: 0.55388
          - type: recall_at_100
            value: 0.81517
          - type: recall_at_1000
            value: 0.95038
          - type: recall_at_3
            value: 0.40133
          - type: recall_at_5
            value: 0.45913
      - dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.24067
          - type: map_at_10
            value: 0.32184
          - type: map_at_100
            value: 0.33357
          - type: map_at_1000
            value: 0.33458
          - type: map_at_3
            value: 0.29492
          - type: map_at_5
            value: 0.3111
          - type: mrr_at_1
            value: 0.26248
          - type: mrr_at_10
            value: 0.34149
          - type: mrr_at_100
            value: 0.35189
          - type: mrr_at_1000
            value: 0.35251
          - type: mrr_at_3
            value: 0.31639
          - type: mrr_at_5
            value: 0.33182
          - type: ndcg_at_1
            value: 0.26248
          - type: ndcg_at_10
            value: 0.36889
          - type: ndcg_at_100
            value: 0.42426
          - type: ndcg_at_1000
            value: 0.44745
          - type: ndcg_at_3
            value: 0.31799
          - type: ndcg_at_5
            value: 0.34563
          - type: precision_at_1
            value: 0.26248
          - type: precision_at_10
            value: 0.05712
          - type: precision_at_100
            value: 0.00915
          - type: precision_at_1000
            value: 0.00123
          - type: precision_at_3
            value: 0.13309
          - type: precision_at_5
            value: 0.09649
          - type: recall_at_1
            value: 0.24067
          - type: recall_at_10
            value: 0.49344
          - type: recall_at_100
            value: 0.7412
          - type: recall_at_1000
            value: 0.91276
          - type: recall_at_3
            value: 0.36272
          - type: recall_at_5
            value: 0.4277
      - dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.08651
          - type: map_at_10
            value: 0.17628
          - type: map_at_100
            value: 0.23354
          - type: map_at_1000
            value: 0.24827
          - type: map_at_3
            value: 0.1351
          - type: map_at_5
            value: 0.15468
          - type: mrr_at_1
            value: 0.645
          - type: mrr_at_10
            value: 0.71989
          - type: mrr_at_100
            value: 0.72332
          - type: mrr_at_1000
            value: 0.72346
          - type: mrr_at_3
            value: 0.7025
          - type: mrr_at_5
            value: 0.71275
          - type: ndcg_at_1
            value: 0.51375
          - type: ndcg_at_10
            value: 0.3596
          - type: ndcg_at_100
            value: 0.39878
          - type: ndcg_at_1000
            value: 0.47931
          - type: ndcg_at_3
            value: 0.41275
          - type: ndcg_at_5
            value: 0.38297
          - type: precision_at_1
            value: 0.645
          - type: precision_at_10
            value: 0.2745
          - type: precision_at_100
            value: 0.08405
          - type: precision_at_1000
            value: 0.01923
          - type: precision_at_3
            value: 0.44417
          - type: precision_at_5
            value: 0.366
          - type: recall_at_1
            value: 0.08651
          - type: recall_at_10
            value: 0.22416
          - type: recall_at_100
            value: 0.46381
          - type: recall_at_1000
            value: 0.71557
          - type: recall_at_3
            value: 0.14847
          - type: recall_at_5
            value: 0.1804
      - dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.73211
          - type: map_at_10
            value: 0.81463
          - type: map_at_100
            value: 0.81622
          - type: map_at_1000
            value: 0.81634
          - type: map_at_3
            value: 0.805
          - type: map_at_5
            value: 0.81134
          - type: mrr_at_1
            value: 0.79088
          - type: mrr_at_10
            value: 0.86943
          - type: mrr_at_100
            value: 0.87017
          - type: mrr_at_1000
            value: 0.87018
          - type: mrr_at_3
            value: 0.86154
          - type: mrr_at_5
            value: 0.867
          - type: ndcg_at_1
            value: 0.79088
          - type: ndcg_at_10
            value: 0.85528
          - type: ndcg_at_100
            value: 0.86134
          - type: ndcg_at_1000
            value: 0.86367
          - type: ndcg_at_3
            value: 0.83943
          - type: ndcg_at_5
            value: 0.84878
          - type: precision_at_1
            value: 0.79088
          - type: precision_at_10
            value: 0.10132
          - type: precision_at_100
            value: 0.01055
          - type: precision_at_1000
            value: 0.00109
          - type: precision_at_3
            value: 0.31963
          - type: precision_at_5
            value: 0.19769
          - type: recall_at_1
            value: 0.73211
          - type: recall_at_10
            value: 0.92797
          - type: recall_at_100
            value: 0.95263
          - type: recall_at_1000
            value: 0.96738
          - type: recall_at_3
            value: 0.88328
          - type: recall_at_5
            value: 0.90821
      - dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.18311
          - type: map_at_10
            value: 0.29201
          - type: map_at_100
            value: 0.3093
          - type: map_at_1000
            value: 0.31116
          - type: map_at_3
            value: 0.24778
          - type: map_at_5
            value: 0.27453
          - type: mrr_at_1
            value: 0.35494
          - type: mrr_at_10
            value: 0.44489
          - type: mrr_at_100
            value: 0.4532
          - type: mrr_at_1000
            value: 0.45369
          - type: mrr_at_3
            value: 0.41667
          - type: mrr_at_5
            value: 0.43418
          - type: ndcg_at_1
            value: 0.35494
          - type: ndcg_at_10
            value: 0.36868
          - type: ndcg_at_100
            value: 0.43463
          - type: ndcg_at_1000
            value: 0.46766
          - type: ndcg_at_3
            value: 0.32305
          - type: ndcg_at_5
            value: 0.34332
          - type: precision_at_1
            value: 0.35494
          - type: precision_at_10
            value: 0.10324
          - type: precision_at_100
            value: 0.01707
          - type: precision_at_1000
            value: 0.00229
          - type: precision_at_3
            value: 0.21142
          - type: precision_at_5
            value: 0.16327
          - type: recall_at_1
            value: 0.18311
          - type: recall_at_10
            value: 0.43881
          - type: recall_at_100
            value: 0.68593
          - type: recall_at_1000
            value: 0.8855
          - type: recall_at_3
            value: 0.28824
          - type: recall_at_5
            value: 0.36178
      - dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.36766
          - type: map_at_10
            value: 0.53639
          - type: map_at_100
            value: 0.54532
          - type: map_at_1000
            value: 0.54608
          - type: map_at_3
            value: 0.50427
          - type: map_at_5
            value: 0.5245
          - type: mrr_at_1
            value: 0.73531
          - type: mrr_at_10
            value: 0.80104
          - type: mrr_at_100
            value: 0.80341
          - type: mrr_at_1000
            value: 0.80351
          - type: mrr_at_3
            value: 0.78949
          - type: mrr_at_5
            value: 0.79729
          - type: ndcg_at_1
            value: 0.73531
          - type: ndcg_at_10
            value: 0.62918
          - type: ndcg_at_100
            value: 0.66056
          - type: ndcg_at_1000
            value: 0.67554
          - type: ndcg_at_3
            value: 0.58247
          - type: ndcg_at_5
            value: 0.60905
          - type: precision_at_1
            value: 0.73531
          - type: precision_at_10
            value: 0.1302
          - type: precision_at_100
            value: 0.01546
          - type: precision_at_1000
            value: 0.00175
          - type: precision_at_3
            value: 0.36556
          - type: precision_at_5
            value: 0.24032
          - type: recall_at_1
            value: 0.36766
          - type: recall_at_10
            value: 0.65098
          - type: recall_at_100
            value: 0.77306
          - type: recall_at_1000
            value: 0.87252
          - type: recall_at_3
            value: 0.54835
          - type: recall_at_5
            value: 0.60081
      - dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.14654
          - type: map_at_10
            value: 0.2472
          - type: map_at_100
            value: 0.25994
          - type: map_at_1000
            value: 0.26067
          - type: map_at_3
            value: 0.21234
          - type: map_at_5
            value: 0.2319
          - type: mrr_at_1
            value: 0.15086
          - type: mrr_at_10
            value: 0.25184
          - type: mrr_at_100
            value: 0.26422
          - type: mrr_at_1000
            value: 0.26489
          - type: mrr_at_3
            value: 0.21731
          - type: mrr_at_5
            value: 0.23674
          - type: ndcg_at_1
            value: 0.15086
          - type: ndcg_at_10
            value: 0.30711
          - type: ndcg_at_100
            value: 0.37221
          - type: ndcg_at_1000
            value: 0.39133
          - type: ndcg_at_3
            value: 0.23567
          - type: ndcg_at_5
            value: 0.27066
          - type: precision_at_1
            value: 0.15086
          - type: precision_at_10
            value: 0.05132
          - type: precision_at_100
            value: 0.00845
          - type: precision_at_1000
            value: 0.00101
          - type: precision_at_3
            value: 0.10277
          - type: precision_at_5
            value: 0.07923
          - type: recall_at_1
            value: 0.14654
          - type: recall_at_10
            value: 0.49341
          - type: recall_at_100
            value: 0.80224
          - type: recall_at_1000
            value: 0.95037
          - type: recall_at_3
            value: 0.29862
          - type: recall_at_5
            value: 0.38274
      - dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.05452
          - type: map_at_10
            value: 0.12758
          - type: map_at_100
            value: 0.1593
          - type: map_at_1000
            value: 0.17422
          - type: map_at_3
            value: 0.0945
          - type: map_at_5
            value: 0.1092
          - type: mrr_at_1
            value: 0.43963
          - type: mrr_at_10
            value: 0.53237
          - type: mrr_at_100
            value: 0.53777
          - type: mrr_at_1000
            value: 0.53822
          - type: mrr_at_3
            value: 0.51445
          - type: mrr_at_5
            value: 0.52466
          - type: ndcg_at_1
            value: 0.41486
          - type: ndcg_at_10
            value: 0.33737
          - type: ndcg_at_100
            value: 0.30886
          - type: ndcg_at_1000
            value: 0.40018
          - type: ndcg_at_3
            value: 0.39324
          - type: ndcg_at_5
            value: 0.36949
          - type: precision_at_1
            value: 0.43344
          - type: precision_at_10
            value: 0.24799
          - type: precision_at_100
            value: 0.07895
          - type: precision_at_1000
            value: 0.02091
          - type: precision_at_3
            value: 0.37152
          - type: precision_at_5
            value: 0.31703
          - type: recall_at_1
            value: 0.05452
          - type: recall_at_10
            value: 0.1712
          - type: recall_at_100
            value: 0.30719
          - type: recall_at_1000
            value: 0.62766
          - type: recall_at_3
            value: 0.10733
          - type: recall_at_5
            value: 0.13553
      - dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.29022
          - type: map_at_10
            value: 0.4373
          - type: map_at_100
            value: 0.44849
          - type: map_at_1000
            value: 0.44877
          - type: map_at_3
            value: 0.39045
          - type: map_at_5
            value: 0.4186
          - type: mrr_at_1
            value: 0.32793
          - type: mrr_at_10
            value: 0.46243
          - type: mrr_at_100
            value: 0.47083
          - type: mrr_at_1000
            value: 0.47101
          - type: mrr_at_3
            value: 0.42261
          - type: mrr_at_5
            value: 0.44775
          - type: ndcg_at_1
            value: 0.32793
          - type: ndcg_at_10
            value: 0.51631
          - type: ndcg_at_100
            value: 0.56287
          - type: ndcg_at_1000
            value: 0.56949
          - type: ndcg_at_3
            value: 0.42782
          - type: ndcg_at_5
            value: 0.47554
          - type: precision_at_1
            value: 0.32793
          - type: precision_at_10
            value: 0.08737
          - type: precision_at_100
            value: 0.01134
          - type: precision_at_1000
            value: 0.0012
          - type: precision_at_3
            value: 0.19583
          - type: precision_at_5
            value: 0.14484
          - type: recall_at_1
            value: 0.29022
          - type: recall_at_10
            value: 0.73325
          - type: recall_at_100
            value: 0.93455
          - type: recall_at_1000
            value: 0.98414
          - type: recall_at_3
            value: 0.50406
          - type: recall_at_5
            value: 0.6145
      - dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.68941
          - type: map_at_10
            value: 0.82641
          - type: map_at_100
            value: 0.83317
          - type: map_at_1000
            value: 0.83337
          - type: map_at_3
            value: 0.79604
          - type: map_at_5
            value: 0.81525
          - type: mrr_at_1
            value: 0.7935
          - type: mrr_at_10
            value: 0.85969
          - type: mrr_at_100
            value: 0.86094
          - type: mrr_at_1000
            value: 0.86095
          - type: mrr_at_3
            value: 0.84852
          - type: mrr_at_5
            value: 0.85627
          - type: ndcg_at_1
            value: 0.7936
          - type: ndcg_at_10
            value: 0.86687
          - type: ndcg_at_100
            value: 0.88094
          - type: ndcg_at_1000
            value: 0.88243
          - type: ndcg_at_3
            value: 0.83538
          - type: ndcg_at_5
            value: 0.85308
          - type: precision_at_1
            value: 0.7936
          - type: precision_at_10
            value: 0.13145
          - type: precision_at_100
            value: 0.01517
          - type: precision_at_1000
            value: 0.00156
          - type: precision_at_3
            value: 0.36353
          - type: precision_at_5
            value: 0.24044
          - type: recall_at_1
            value: 0.68941
          - type: recall_at_10
            value: 0.94407
          - type: recall_at_100
            value: 0.99226
          - type: recall_at_1000
            value: 0.99958
          - type: recall_at_3
            value: 0.85502
          - type: recall_at_5
            value: 0.90372
      - dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.04988
          - type: map_at_10
            value: 0.13553
          - type: map_at_100
            value: 0.16136
          - type: map_at_1000
            value: 0.16512
          - type: map_at_3
            value: 0.09439
          - type: map_at_5
            value: 0.1146
          - type: mrr_at_1
            value: 0.246
          - type: mrr_at_10
            value: 0.36792
          - type: mrr_at_100
            value: 0.37973
          - type: mrr_at_1000
            value: 0.38011
          - type: mrr_at_3
            value: 0.33117
          - type: mrr_at_5
            value: 0.35172
          - type: ndcg_at_1
            value: 0.246
          - type: ndcg_at_10
            value: 0.22542
          - type: ndcg_at_100
            value: 0.32326
          - type: ndcg_at_1000
            value: 0.3828
          - type: ndcg_at_3
            value: 0.20896
          - type: ndcg_at_5
            value: 0.18497
          - type: precision_at_1
            value: 0.246
          - type: precision_at_10
            value: 0.1194
          - type: precision_at_100
            value: 0.02616
          - type: precision_at_1000
            value: 0.00404
          - type: precision_at_3
            value: 0.198
          - type: precision_at_5
            value: 0.1654
          - type: recall_at_1
            value: 0.04988
          - type: recall_at_10
            value: 0.24212
          - type: recall_at_100
            value: 0.53105
          - type: recall_at_1000
            value: 0.82022
          - type: recall_at_3
            value: 0.12047
          - type: recall_at_5
            value: 0.16777
      - dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.56578
          - type: map_at_10
            value: 0.66725
          - type: map_at_100
            value: 0.67379
          - type: map_at_1000
            value: 0.674
          - type: map_at_3
            value: 0.63416
          - type: map_at_5
            value: 0.6577
          - type: mrr_at_1
            value: 0.59333
          - type: mrr_at_10
            value: 0.67533
          - type: mrr_at_100
            value: 0.68062
          - type: mrr_at_1000
            value: 0.68082
          - type: mrr_at_3
            value: 0.64944
          - type: mrr_at_5
            value: 0.66928
          - type: ndcg_at_1
            value: 0.59333
          - type: ndcg_at_10
            value: 0.7127
          - type: ndcg_at_100
            value: 0.73889
          - type: ndcg_at_1000
            value: 0.7441
          - type: ndcg_at_3
            value: 0.65793
          - type: ndcg_at_5
            value: 0.69429
          - type: precision_at_1
            value: 0.59333
          - type: precision_at_10
            value: 0.096
          - type: precision_at_100
            value: 0.01087
          - type: precision_at_1000
            value: 0.00113
          - type: precision_at_3
            value: 0.25556
          - type: precision_at_5
            value: 0.17667
          - type: recall_at_1
            value: 0.56578
          - type: recall_at_10
            value: 0.842
          - type: recall_at_100
            value: 0.95667
          - type: recall_at_1000
            value: 0.99667
          - type: recall_at_3
            value: 0.70072
          - type: recall_at_5
            value: 0.79011
      - dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.01976
          - type: map_at_10
            value: 0.09688
          - type: map_at_100
            value: 0.15117
          - type: map_at_1000
            value: 0.16769
          - type: map_at_3
            value: 0.04589
          - type: map_at_5
            value: 0.06556
          - type: mrr_at_1
            value: 0.26531
          - type: mrr_at_10
            value: 0.43863
          - type: mrr_at_100
            value: 0.44767
          - type: mrr_at_1000
            value: 0.44767
          - type: mrr_at_3
            value: 0.39116
          - type: mrr_at_5
            value: 0.41156
          - type: ndcg_at_1
            value: 0.23469
          - type: ndcg_at_10
            value: 0.24029
          - type: ndcg_at_100
            value: 0.34425
          - type: ndcg_at_1000
            value: 0.46907
          - type: ndcg_at_3
            value: 0.25522
          - type: ndcg_at_5
            value: 0.24333
          - type: precision_at_1
            value: 0.26531
          - type: precision_at_10
            value: 0.22449
          - type: precision_at_100
            value: 0.07122
          - type: precision_at_1000
            value: 0.01527
          - type: precision_at_3
            value: 0.27891
          - type: precision_at_5
            value: 0.25714
          - type: recall_at_1
            value: 0.01976
          - type: recall_at_10
            value: 0.16633
          - type: recall_at_100
            value: 0.4561
          - type: recall_at_1000
            value: 0.82481
          - type: recall_at_3
            value: 0.06101
          - type: recall_at_5
            value: 0.0968
      - dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
        task:
          type: Retrieval
        metrics:
          - type: map_at_1
            value: 0.00211
          - type: map_at_10
            value: 0.01526
          - type: map_at_100
            value: 0.08863
          - type: map_at_1000
            value: 0.23162
          - type: map_at_3
            value: 0.00555
          - type: map_at_5
            value: 0.00873
          - type: mrr_at_1
            value: 0.76
          - type: mrr_at_10
            value: 0.8485
          - type: mrr_at_100
            value: 0.8485
          - type: mrr_at_1000
            value: 0.8485
          - type: mrr_at_3
            value: 0.84
          - type: mrr_at_5
            value: 0.844
          - type: ndcg_at_1
            value: 0.7
          - type: ndcg_at_10
            value: 0.63098
          - type: ndcg_at_100
            value: 0.49847
          - type: ndcg_at_1000
            value: 0.48395
          - type: ndcg_at_3
            value: 0.68704
          - type: ndcg_at_5
            value: 0.67533
          - type: precision_at_1
            value: 0.76
          - type: precision_at_10
            value: 0.66
          - type: precision_at_100
            value: 0.5134
          - type: precision_at_1000
            value: 0.2168
          - type: precision_at_3
            value: 0.72667
          - type: precision_at_5
            value: 0.716
          - type: recall_at_1
            value: 0.00211
          - type: recall_at_10
            value: 0.01748
          - type: recall_at_100
            value: 0.12448
          - type: recall_at_1000
            value: 0.46795
          - type: recall_at_3
            value: 0.00593
          - type: recall_at_5
            value: 0.00962
pipeline_tag: sentence-similarity

Granite-Embedding-30m-English

Model Summary: Granite-Embedding-30m-English is a 30M parameter dense biencoder embedding model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 384 and is trained using a combination of open source relevance-pair datasets with permissive, enterprise-friendly license, and IBM collected and generated datasets. While maintaining competitive scores on academic benchmarks such as BEIR, this model also performs well on many enterprise use cases. This model is developed using retrieval oriented pretraining, contrastive finetuning, knowledge distillation and model merging for improved performance.

Supported Languages: English.

Intended use: The model is designed to produce fixed length vector representations for a given text, which can be used for text similarity, retrieval, and search applications.

Usage with Sentence Transformers: The model is compatible with SentenceTransformer library and is very easy to use:

First, install the sentence transformers library

pip install sentence_transformers

The model can then be used to encode pairs of text and find the similarity between their representations

from sentence_transformers import SentenceTransformer, util

model_path = "ibm-granite/granite-embedding-30m-english"
# Load the Sentence Transformer model
model = SentenceTransformer(model_path)

input_queries = [
    ' Who made the song My achy breaky heart? ',
    'summit define'
    ]

input_passages = [
    "Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't Tell My Heart and performed by The Marcy Brothers in 1991. ",
    "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
    ]

# encode queries and passages
query_embeddings = model.encode(input_queries)
passage_embeddings = model.encode(input_passages)

# calculate cosine similarity
print(util.cos_sim(query_embeddings, passage_embeddings))

Usage with Huggingface Transformers: This is a simple example of how to use the Granite-Embedding-30m-English model with the Transformers library and PyTorch.

First, install the required libraries

pip install transformers torch

The model can then be used to encode pairs of text

import torch
from transformers import AutoModel, AutoTokenizer

model_path = "ibm-granite/granite-embedding-30m-english"

# Load the model and tokenizer
model = AutoModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.eval()

input_queries = [
    ' Who made the song My achy breaky heart? ',
    'summit define'
    ]

# tokenize inputs
tokenized_queries = tokenizer(input_queries, padding=True, truncation=True, return_tensors='pt')

# encode queries
with torch.no_grad():
    # Queries
    model_output = model(**tokenized_queries)
    # Perform pooling. granite-embedding-30m-english uses CLS Pooling
    query_embeddings = model_output[0][:, 0]

# normalize the embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, dim=1)

Evaluation:

Granite-Embedding-30M-English is twice as fast as other models with similar embedding dimensions, while maintaining competitive performance. The performance of the Granite-Embedding-30M-English model on MTEB Retrieval (i.e., BEIR) and code retrieval (CoIR) benchmarks is reported below.

Model Paramters (M) Embedding Dimension MTEB Retrieval (15) CoIR (10)
granite-embedding-30m-english 30 384 49.1 47.0

Model Architecture: Granite-Embedding-30m-English is based on an encoder-only RoBERTa like transformer architecture, trained internally at IBM Research.

Model granite-embedding-30m-english granite-embedding-125m-english granite-embedding-107m-multilingual granite-embedding-278m-multilingual
Embedding size 384 768 384 768
Number of layers 6 12 6 12
Number of attention heads 12 12 12 12
Intermediate size 1536 3072 1536 3072
Activation Function GeLU GeLU GeLU GeLU
Vocabulary Size 50265 50265 250002 250002
Max. Sequence Length 512 512 512 512
# Parameters 30M 125M 107M 278M

Training Data: Overall, the training data consists of four key sources: (1) unsupervised title-body paired data scraped from the web, (2) publicly available paired with permissive, enterprise-friendly license, (3) IBM-internal paired data targetting specific technical domains, and (4) IBM-generated synthetic data. The data is listed below:

Dataset Num. Pairs
SPECTER citation triplets 684,100
Stack Exchange Duplicate questions (titles) 304,525
Stack Exchange Duplicate questions (bodies) 250,519
Stack Exchange Duplicate questions (titles+bodies) 250,460
Natural Questions (NQ) 100,231
SQuAD2.0 87,599
PAQ (Question, Answer) pairs 64,371,441
Stack Exchange (Title, Answer) pairs 4,067,139
Stack Exchange (Title, Body) pairs 23,978,013
Stack Exchange (Title+Body, Answer) pairs 187,195
S2ORC Citation pairs (Titles) 52,603,982
S2ORC (Title, Abstract) 41,769,185
S2ORC (Citations, abstracts) 52,603,982
WikiAnswers Duplicate question pairs 77,427,422
SearchQA 582,261
HotpotQA 85,000
Fever 109,810
Arxiv 2,358,545
Wikipedia 20,745,403
PubMed 20,000,000
Miracl En Pairs 9,016
DBPedia Title-Body Pairs 4,635,922
Synthetic: Query-Wikipedia Passage 1,879,093
Synthetic: Fact Verification 9,888
IBM Internal Triples 40,290
IBM Internal Title-Body Pairs 1,524,586

Notably, we do not use the popular MS-MARCO retrieval dataset in our training corpus due to its non-commercial license, while other open-source models train on this dataset due to its high quality.

Infrastructure: We train Granite Embedding Models using IBM's computing cluster, Cognitive Compute Cluster, which is outfitted with NVIDIA A100 80gb GPUs. This cluster provides a scalable and efficient infrastructure for training our models over multiple GPUs.

Ethical Considerations and Limitations: The data used to train the base language model was filtered to remove text containing hate, abuse, and profanity. Granite-Embedding-30m-English is trained only for English texts, and has a context length of 512 tokens (longer texts will be truncated to this size).

Resources