|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
license: apache-2.0 |
|
--- |
|
|
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6389d3c61e8755d777902366/-_AiKUEsY3x-N7oY52fdE.jpeg" style="border-radius:2%; width: 66%"> |
|
|
|
# pandafish-7b |
|
|
|
pandafish-7b is an instruct model based on a [Model Stock](https://arxiv.org/abs/2403.19522) merge of the following models (via [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)): |
|
|
|
## 𧩠Configuration |
|
|
|
```yaml |
|
models: |
|
- model: mistralai/Mistral-7B-v0.1 |
|
- model: mistralai/Mistral-7B-Instruct-v0.2 |
|
- model: CultriX/NeuralTrix-bf16 |
|
- model: OpenPipe/mistral-ft-optimized-1227 |
|
merge_method: model_stock |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## π Evals |
|
|
|
| Model |Average|AGIEval|GPT4All|TruthfulQA|Bigbench| |
|
|---------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[pandafish-7b](https://huggingface.co/ichigoberry/pandafish-7b) [π](https://gist.github.com/tosh/dda6a21e568d17a410ca618265f64a28)| 51.99 | **40** | **74.23** | 53.22 | 40.51 | |
|
|[mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) [π](https://gist.github.com/mlabonne/05d358e17dffdf9eee7c2322380c9da6) | 54.81 | 38.5 | 71.64 | **66.82** | **42.29** | |
|
|
|
|
|
## π» Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "ichigoberry/pandafish-7b" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |