Multilingual Identification of English Code-Switching

AnE-LID (Any-English Code-Switching Language Identification) is a token-level model for detecting English code-switching in multilingual texts. It classifies words into four classes: English, notEnglish, Mixed, and Other. The model shows strong performance on both languages seen and unseen in the training data.

Usage

You can use AnE-LID with Huggingface’s pipeline or AutoModelForTokenClassification.

Let's try the following example (taken from this paper)

input = "ich glaub ich muss echt rewatchen like i feel so empty was soll ich denn jetzt machen?"

Pipeline

from transformers import pipeline
classifier = pipeline("token-classification", model="igorsterner/AnE-LID", aggregation_strategy="simple")
result = classifier(input)

which returns

[{'entity_group': 'notEnglish',
  'score': 0.9999998,
  'word': 'ich glaub ich muss echt',
  'start': 0,
  'end': 23},
 {'entity_group': 'Mixed',
  'score': 0.9999941,
  'word': 'rewatchen',
  'start': 24,
  'end': 33},
 {'entity_group': 'English',
  'score': 0.99999154,
  'word': 'like i feel so empty',
  'start': 34,
  'end': 54},
 {'entity_group': 'notEnglish',
  'score': 0.9292571,
  'word': 'was soll ich denn jetzt machen?',
  'start': 55,
  'end': 86}]

Advanced

If your input is already word-tokenized, and you want the corresponding word language labels, you can try the following strategy

import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer

lid_model_name = "igorsterner/AnE-LID"
lid_tokenizer = AutoTokenizer.from_pretrained(lid_model_name)
lid_model = AutoModelForTokenClassification.from_pretrained(lid_model_name)

word_tokens = ['ich', 'glaub', 'ich', 'muss', 'echt', 'rewatchen', 'like', 'i', 'feel', 'so', 'empty', 'was', 'soll', 'ich', 'denn', 'jetzt', 'machen', '?']

subword_inputs = lid_tokenizer(
    word_tokens, truncation=True, is_split_into_words=True, return_tensors="pt"
)

subword2word = subword_inputs.word_ids(batch_index=0)
logits = lid_model(**subword_inputs).logits
predictions = torch.argmax(logits, dim=2)

predicted_subword_labels = [lid_model.config.id2label[t.item()] for t in predictions[0]]
predicted_word_labels = [[] for _ in range(len(word_tokens))]

for idx, predicted_subword in enumerate(predicted_subword_labels):
    if subword2word[idx] is not None:
        predicted_word_labels[subword2word[idx]].append(predicted_subword)

def most_frequent(lst):
    return max(set(lst), key=lst.count) if lst else "Other"

predicted_word_labels = [most_frequent(sublist) for sublist in predicted_word_labels]

for token, label in zip(word_tokens, predicted_word_labels):
    print(f"{token}: {label}")

which returns

ich: notEnglish
glaub: notEnglish
ich: notEnglish
muss: notEnglish
echt: notEnglish
rewatchen: Mixed
like: English
i: English
feel: English
so: English
empty: English
was: notEnglish
soll: notEnglish
ich: notEnglish
denn: notEnglish
jetzt: notEnglish
machen: notEnglish
?: Other

Named entities

If you also want to tag named entities, you can also run AnE-NER. Checkout my evaluation scripts for examples on using both at the same time, as we did in the paper: https://github.com/igorsterner/AnE/tree/main/eval.

Citation

Please consider citing my work if it helped you

@inproceedings{sterner-2024-multilingual,
    title = "Multilingual Identification of {E}nglish Code-Switching",
    author = "Sterner, Igor",
    editor = {Scherrer, Yves  and
      Jauhiainen, Tommi  and
      Ljube{\v{s}}i{\'c}, Nikola  and
      Zampieri, Marcos  and
      Nakov, Preslav  and
      Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)",
    month = jun,
    year = "2024",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.vardial-1.14",
    doi = "10.18653/v1/2024.vardial-1.14",
    pages = "163--173",
    abstract = "Code-switching research depends on fine-grained language identification. In this work, we study existing corpora used to train token-level language identification systems. We aggregate these corpora with a consistent labelling scheme and train a system to identify English code-switching in multilingual text. We show that the system identifies code-switching in unseen language pairs with absolute measure 2.3-4.6{\%} better than language-pair-specific SoTA. We also analyse the correlation between typological similarity of the languages and difficulty in recognizing code-switching.",
}
Downloads last month
25
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for igorsterner/AnE-LID

Finetuned
(337)
this model