ihanif's picture
Update README.md
d1c7a63
|
raw
history blame
2.67 kB
metadata
license: apache-2.0
tags:
  - google/fleurs
  - generated_from_trainer
  - automatic-speech-recognition
  - pashto
  - ps
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: facebook/wav2vec2-xls-r-300m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          args: 'config: ps_af, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 51.59447476125512

facebook/wav2vec2-xls-r-300m

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GOOGLE/FLEURS - PS_AF dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9162
  • Wer: 51.59
  • Cer: 19.72

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
5.0767 6.33 500 1.0 4.8783 1.0
3.1156 12.66 1000 1.0 3.0990 1.0
1.3506 18.99 1500 0.2889 1.1056 0.7031
0.9997 25.32 2000 0.2301 0.9191 0.5944
0.7838 31.65 2500 0.2152 0.8952 0.5556
0.6665 37.97 3000 0.2017 0.8908 0.5252
0.6265 44.3 3500 0.1954 0.9063 0.5133
0.5935 50.63 4000 0.1969 0.9162 0.5156
0.5174 56.96 4500 0.1972 0.9287 0.5140
0.5462 63.29 5000 0.1974 0.9370 0.5138
0.5564 69.62 5500 0.1977 0.9461 0.5148
0.5252 75.95 6000 0.9505 0.5118 0.1969

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2