whisper-medium-urdu / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
1c60cd1
|
raw
history blame
2.06 kB
metadata
language:
  - ur
license: apache-2.0
tags:
  - automatic-speech-recognition
  - hf-asr-leaderboard
  - urdu
  - ur
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Medium Urdu
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: ur, split: test'
        metrics:
          - type: wer
            value: 26.980130911344357
            name: Wer

Whisper Medium Urdu

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 ur dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4685
  • Wer: 26.9801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 40
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3908 0.48 100 0.5148 30.7061
0.3519 0.97 200 0.4685 26.9801
0.2426 1.45 300 0.4636 28.5023

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2