metadata
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: frozenLake_4x4_nonSlippery
results:
- metrics:
- type: mean_reward
value: 0.79 +/- 0.41
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
Q-Learning Agent playing FrozenLake-version-1
This is a trained model of a Q-Learning Algorithm agent playing in the FrozenLake-v1 Environment .
Usage
model = load_from_hub(repo_id="iiShreya/frozenLake_4x4_nonSlippery", filename="q-learning.pkl")
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])