The embedding model trained by Jina AI.
jina-embeddings-v3: Multilingual Embeddings With Task LoRA
Quick Start
Blog | Azure | AWS SageMaker | API
Intended Usage & Model Info
jina-embeddings-v3
is a multilingual multi-task text embedding model designed for a variety of NLP applications.
Based on the Jina-XLM-RoBERTa architecture,
this model supports Rotary Position Embeddings to handle long input sequences up to 8192 tokens.
Additionally, it features 5 LoRA adapters to generate task-specific embeddings efficiently.
Key Features:
- Extended Sequence Length: Supports up to 8192 tokens with RoPE.
- Task-Specific Embedding: Customize embeddings through the
task
argument with the following options:retrieval.query
: Used for query embeddings in asymmetric retrieval tasksretrieval.passage
: Used for passage embeddings in asymmetric retrieval tasksseparation
: Used for embeddings in clustering and re-ranking applicationsclassification
: Used for embeddings in classification taskstext-matching
: Used for embeddings in tasks that quantify similarity between two texts, such as STS or symmetric retrieval tasks
- Matryoshka Embeddings: Supports flexible embedding sizes (
32, 64, 128, 256, 512, 768, 1024
), allowing for truncating embeddings to fit your application.
Supported Languages:
While the foundation model supports 100 languages, we've focused our tuning efforts on the following 30 languages: Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, Georgian, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Latvian, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, Swedish, Thai, Turkish, Ukrainian, Urdu, and Vietnamese.
Usage
Apply mean pooling when integrating the model.
Why Use Mean Pooling?
Mean pooling takes all token embeddings from the model's output and averages them at the sentence or paragraph level. This approach has been shown to produce high-quality sentence embeddings.
We provide an encode
function that handles this for you automatically.
However, if you're working with the model directly, outside of the encode
function,
you'll need to apply mean pooling manually. Here's how you can do it:
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
sentences = ["How is the weather today?", "What is the current weather like today?"]
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v3")
model = AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code=True)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
task = 'retrieval.query'
task_id = model._adaptation_map[task]
adapter_mask = torch.full((len(sentences),), task_id, dtype=torch.int32)
with torch.no_grad():
model_output = model(**encoded_input, adapter_mask=adapter_mask)
embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
embeddings = F.normalize(embeddings, p=2, dim=1)
The easiest way to start using jina-embeddings-v3
is with the Jina Embedding API.
Alternatively, you can use jina-embeddings-v3
directly via Transformers package:
!pip install transformers torch einops
!pip install 'numpy<2'
If you run it on a GPU that support FlashAttention-2. By 2024.9.12, it supports Ampere, Ada, or Hopper GPUs (e.g., A100, RTX 3090, RTX 4090, H100),
!pip install flash-attn --no-build-isolation
from transformers import AutoModel
# Initialize the model
model = AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code=True)
texts = [
"Follow the white rabbit.", # English
"Sigue al conejo blanco.", # Spanish
"Suis le lapin blanc.", # French
"跟着白兔走。", # Chinese
"اتبع الأرنب الأبيض.", # Arabic
"Folge dem weißen Kaninchen.", # German
]
# When calling the `encode` function, you can choose a `task` based on the use case:
# 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
# Alternatively, you can choose not to pass a `task`, and no specific LoRA adapter will be used.
embeddings = model.encode(texts, task="text-matching")
# Compute similarities
print(embeddings[0] @ embeddings[1].T)
By default, the model supports a maximum sequence length of 8192 tokens.
However, if you want to truncate your input texts to a shorter length, you can pass the max_length
parameter to the encode
function:
embeddings = model.encode(["Very long ... document"], max_length=2048)
In case you want to use Matryoshka embeddings and switch to a different dimension,
you can adjust it by passing the truncate_dim
parameter to the encode
function:
embeddings = model.encode(['Sample text'], truncate_dim=256)
The latest version (3.1.0) of SentenceTransformers also supports jina-embeddings-v3
:
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True)
task = "retrieval.query"
embeddings = model.encode(
["What is the weather like in Berlin today?"],
task=task,
prompt_name=task,
)
You can fine-tune jina-embeddings-v3
using SentenceTransformerTrainer.
To fine-tune for a specific task, you should set the task before passing the model to the ST Trainer, either during initialization:
model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True, model_kwargs={'default_task': 'classification'})
Or afterwards:
model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True)
model[0].default_task = 'classification'
This way you can fine-tune the LoRA adapter for the chosen task.
However, If you want to fine-tune the entire model, make sure the main parameters are set as trainable when loading the model:
model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True, model_kwargs={'lora_main_params_trainable': True})
This will allow fine-tuning the whole model instead of just the LoRA adapters.
ONNX Inference.
You can use ONNX for efficient inference with jina-embeddings-v3
:
import onnxruntime
import numpy as np
from transformers import AutoTokenizer, PretrainedConfig
# Load tokenizer and model config
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v3')
config = PretrainedConfig.from_pretrained('jinaai/jina-embeddings-v3')
# Tokenize input
input_text = tokenizer('sample text', return_tensors='np')
# ONNX session
model_path = 'jina-embeddings-v3/onnx/model.onnx'
session = onnxruntime.InferenceSession(model_path)
# Prepare inputs for ONNX model
task_type = 'text-matching'
task_id = np.array(config.lora_adaptations.index(task_type), dtype=np.int64)
inputs = {
'input_ids': input_text['input_ids'],
'attention_mask': input_text['attention_mask'],
'task_id': task_id
}
# Run model
outputs = session.run(None, inputs)[0]
# Apply mean pooling to 'outputs' to get a single representation of each text
Contact
Join our Discord community and chat with other community members about ideas.
License
jina-embeddings-v3
is listed on AWS & Azure. If you need to use it beyond those platforms or on-premises within your company, note that the models is licensed under CC BY-NC 4.0. For commercial usage inquiries, feel free to contact us.
Citation
If you find jina-embeddings-v3
useful in your research, please cite the following paper:
@misc{sturua2024jinaembeddingsv3multilingualembeddingstask,
title={jina-embeddings-v3: Multilingual Embeddings With Task LoRA},
author={Saba Sturua and Isabelle Mohr and Mohammad Kalim Akram and Michael Günther and Bo Wang and Markus Krimmel and Feng Wang and Georgios Mastrapas and Andreas Koukounas and Andreas Koukounas and Nan Wang and Han Xiao},
year={2024},
eprint={2409.10173},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.10173},
}
- Downloads last month
- 191
Evaluation results
- cosine_pearson on MTEB AFQMC (default)validation set self-reported41.742
- cosine_spearman on MTEB AFQMC (default)validation set self-reported43.473
- euclidean_pearson on MTEB AFQMC (default)validation set self-reported42.245
- euclidean_spearman on MTEB AFQMC (default)validation set self-reported43.525
- main_score on MTEB AFQMC (default)validation set self-reported43.473
- manhattan_pearson on MTEB AFQMC (default)validation set self-reported42.046
- manhattan_spearman on MTEB AFQMC (default)validation set self-reported43.309
- pearson on MTEB AFQMC (default)validation set self-reported41.742
- spearman on MTEB AFQMC (default)validation set self-reported43.473
- main_score on MTEB ArguAna-PL (default)test set self-reported50.118