|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- unsloth |
|
- generated_from_trainer |
|
model-index: |
|
- name: lora_final |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lora_final |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2365 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.02 |
|
- num_epochs: 0.3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.3759 | 0.0065 | 1 | 1.3988 | |
|
| 1.4834 | 0.0130 | 2 | 1.3942 | |
|
| 1.255 | 0.0194 | 3 | 1.3840 | |
|
| 1.2544 | 0.0259 | 4 | 1.3690 | |
|
| 1.4768 | 0.0324 | 5 | 1.3500 | |
|
| 1.293 | 0.0389 | 6 | 1.3319 | |
|
| 1.2655 | 0.0453 | 7 | 1.3147 | |
|
| 1.3413 | 0.0518 | 8 | 1.3033 | |
|
| 1.2213 | 0.0583 | 9 | 1.2943 | |
|
| 1.2445 | 0.0648 | 10 | 1.2885 | |
|
| 1.2504 | 0.0713 | 11 | 1.2847 | |
|
| 1.2629 | 0.0777 | 12 | 1.2826 | |
|
| 1.3952 | 0.0842 | 13 | 1.2806 | |
|
| 1.2751 | 0.0907 | 14 | 1.2773 | |
|
| 1.283 | 0.0972 | 15 | 1.2744 | |
|
| 1.2798 | 0.1036 | 16 | 1.2706 | |
|
| 1.2756 | 0.1101 | 17 | 1.2669 | |
|
| 1.1372 | 0.1166 | 18 | 1.2634 | |
|
| 1.2445 | 0.1231 | 19 | 1.2600 | |
|
| 1.3368 | 0.1296 | 20 | 1.2566 | |
|
| 1.3386 | 0.1360 | 21 | 1.2534 | |
|
| 1.1837 | 0.1425 | 22 | 1.2503 | |
|
| 1.2373 | 0.1490 | 23 | 1.2482 | |
|
| 1.1467 | 0.1555 | 24 | 1.2463 | |
|
| 1.1782 | 0.1619 | 25 | 1.2447 | |
|
| 1.1786 | 0.1684 | 26 | 1.2437 | |
|
| 1.2298 | 0.1749 | 27 | 1.2430 | |
|
| 1.2577 | 0.1814 | 28 | 1.2424 | |
|
| 1.2813 | 0.1879 | 29 | 1.2415 | |
|
| 1.2026 | 0.1943 | 30 | 1.2409 | |
|
| 1.283 | 0.2008 | 31 | 1.2403 | |
|
| 1.1598 | 0.2073 | 32 | 1.2396 | |
|
| 1.2361 | 0.2138 | 33 | 1.2389 | |
|
| 1.2846 | 0.2202 | 34 | 1.2386 | |
|
| 1.3396 | 0.2267 | 35 | 1.2380 | |
|
| 1.1525 | 0.2332 | 36 | 1.2377 | |
|
| 1.1395 | 0.2397 | 37 | 1.2373 | |
|
| 1.1794 | 0.2462 | 38 | 1.2370 | |
|
| 1.332 | 0.2526 | 39 | 1.2369 | |
|
| 1.2646 | 0.2591 | 40 | 1.2368 | |
|
| 1.3159 | 0.2656 | 41 | 1.2367 | |
|
| 1.1981 | 0.2721 | 42 | 1.2365 | |
|
| 1.3205 | 0.2785 | 43 | 1.2365 | |
|
| 1.1876 | 0.2850 | 44 | 1.2366 | |
|
| 1.3331 | 0.2915 | 45 | 1.2365 | |
|
| 1.1288 | 0.2980 | 46 | 1.2366 | |
|
| 1.1745 | 0.3045 | 47 | 1.2366 | |
|
| 1.1716 | 0.3109 | 48 | 1.2366 | |
|
| 1.2834 | 0.3174 | 49 | 1.2365 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |