slm-2-dpo-full / README.md
imelnyk's picture
End of training
c7b874a verified
metadata
license: other
base_model: stabilityai/stablelm-2-zephyr-1_6b
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: slm-2-dpo-full
    results: []

slm-2-dpo-full

This model is a fine-tuned version of stabilityai/stablelm-2-zephyr-1_6b on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 31.9894
  • Rewards/chosen: 0.0244
  • Rewards/rejected: 0.0188
  • Rewards/accuracies: 0.5234
  • Rewards/margins: 0.0057
  • Logps/rejected: -2491.7576
  • Logps/chosen: -2806.6704
  • Logits/rejected: -1.6239
  • Logits/chosen: -1.6845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 5
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 80
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
16.8403 0.13 100 19.5118 0.0256 0.0173 0.5273 0.0082 -2491.9011 -2806.5552 -1.6068 -1.6730
28.1241 0.26 200 32.5175 0.0085 -0.0039 0.5234 0.0124 -2494.0195 -2808.2581 -1.6183 -1.6812
84.7591 0.39 300 47.8043 0.0297 0.0136 0.5391 0.0161 -2492.2703 -2806.1406 -1.5968 -1.6601
40.7835 0.52 400 30.6722 0.0168 -0.0029 0.5547 0.0197 -2493.9204 -2807.4263 -1.6288 -1.6917
36.2204 0.65 500 31.2202 0.0303 0.0209 0.5352 0.0095 -2491.5447 -2806.0762 -1.6236 -1.6843
99.7738 0.78 600 33.7403 0.0476 0.0372 0.5391 0.0104 -2489.9089 -2804.3484 -1.6222 -1.6827
41.8506 0.92 700 32.9133 0.0301 0.0195 0.5547 0.0106 -2491.6851 -2806.1006 -1.6211 -1.6823

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.15.2