|
--- |
|
|
|
language: |
|
- multilingual |
|
- af |
|
- am |
|
- ar |
|
- as |
|
- az |
|
- be |
|
- bg |
|
- bm |
|
- bn |
|
- br |
|
- bs |
|
- ca |
|
- cs |
|
- cy |
|
- da |
|
- de |
|
- el |
|
- en |
|
- eo |
|
- es |
|
- et |
|
- eu |
|
- fa |
|
- ff |
|
- fi |
|
- fr |
|
- fy |
|
- ga |
|
- gd |
|
- gl |
|
- gn |
|
- gu |
|
- ha |
|
- he |
|
- hi |
|
- hr |
|
- ht |
|
- hu |
|
- hy |
|
- id |
|
- ig |
|
- is |
|
- it |
|
- ja |
|
- jv |
|
- ka |
|
- kg |
|
- kk |
|
- km |
|
- kn |
|
- ko |
|
- ku |
|
- ky |
|
- la |
|
- lg |
|
- ln |
|
- lo |
|
- lt |
|
- lv |
|
- mg |
|
- mk |
|
- ml |
|
- mn |
|
- mr |
|
- ms |
|
- my |
|
- ne |
|
- nl |
|
- no |
|
- om |
|
- or |
|
- pa |
|
- pl |
|
- ps |
|
- pt |
|
- qu |
|
- ro |
|
- ru |
|
- sa |
|
- sd |
|
- si |
|
- sk |
|
- sl |
|
- so |
|
- sq |
|
- sr |
|
- ss |
|
- su |
|
- sv |
|
- sw |
|
- ta |
|
- te |
|
- th |
|
- ti |
|
- tl |
|
- tn |
|
- tr |
|
- uk |
|
- ur |
|
- uz |
|
- vi |
|
- wo |
|
- xh |
|
- yo |
|
- zh |
|
|
|
|
|
tags: |
|
- retrieval |
|
- entity-retrieval |
|
- named-entity-disambiguation |
|
- entity-disambiguation |
|
- named-entity-linking |
|
- entity-linking |
|
- text2text-generation |
|
--- |
|
|
|
|
|
# mGENRE |
|
|
|
|
|
The mGENRE (multilingual Generative ENtity REtrieval) system as presented in [Multilingual Autoregressive Entity Linking](https://arxiv.org/abs/2103.12528) implemented in pytorch. |
|
|
|
In a nutshell, mGENRE uses a sequence-to-sequence approach to entity retrieval (e.g., linking), based on fine-tuned [mBART](https://arxiv.org/abs/2001.08210) architecture. GENRE performs retrieval generating the unique entity name conditioned on the input text using constrained beam search to only generate valid identifiers. The model was first released in the [facebookresearch/GENRE](https://github.com/facebookresearch/GENRE) repository using `fairseq` (the `transformers` models are obtained with a conversion script similar to [this](https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py). |
|
|
|
This model was trained on 105 languages from Wikipedia. |
|
|
|
## BibTeX entry and citation info |
|
|
|
**Please consider citing our works if you use code from this repository.** |
|
|
|
```bibtex |
|
@article{decao2020multilingual, |
|
author = {De Cao, Nicola and Wu, Ledell and Popat, Kashyap and Artetxe, Mikel |
|
and Goyal, Naman and Plekhanov, Mikhail and Zettlemoyer, Luke |
|
and Cancedda, Nicola and Riedel, Sebastian and Petroni, Fabio}, |
|
title = "{Multilingual Autoregressive Entity Linking}", |
|
journal = {Transactions of the Association for Computational Linguistics}, |
|
volume = {10}, |
|
pages = {274-290}, |
|
year = {2022}, |
|
month = {03}, |
|
issn = {2307-387X}, |
|
doi = {10.1162/tacl_a_00460}, |
|
url = {https://doi.org/10.1162/tacl\_a\_00460}, |
|
eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00460/2004070/tacl\_a\_00460.pdf}, |
|
} |
|
``` |
|
|
|
## Usage |
|
|
|
Here is an example of generation for Wikipedia page disambiguation: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("impresso-project/nel-historic-multilingual") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("impresso-project/nel-historic-multilingual").eval() |
|
|
|
sentences = ["[START] United Press [END] - On the home front, the British populace remains steadfast in the face of ongoing air raids. In [START] London [END], despite the destruction, the spirit of the people is unbroken, with volunteers and civil defense units working tirelessly to support the war effort. Reports from [START] BUP [START]correspondents highlight the nationwide push for increased production in factories, essential for supplying the front lines with the materials needed for victory. "] |
|
|
|
outputs = model.generate( |
|
**tokenizer(sentences, return_tensors="pt"), |
|
num_beams=5, |
|
num_return_sequences=5 |
|
) |
|
|
|
tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
``` |
|
which outputs the following top-5 predictions (using constrained beam search) |
|
``` |
|
['Albert Einstein >> it', |
|
'Albert Einstein (disambiguation) >> en', |
|
'Alfred Einstein >> it', |
|
'Alberto Einstein >> it', |
|
'Einstein >> it'] |
|
``` |
|
|
|
--- |
|
license: agpl-3.0 |
|
--- |
|
|
|
|