Edit model card
YAML Metadata Error: "model-index[0].results[0].dataset.type" must be a string
YAML Metadata Error: "model-index[0].results[0].dataset.name" must be a string

wav2vec2-large-xlsr-53-hebrew

Fine-tuned facebook/wav2vec2-large-xlsr-53 on the several downloaded youtube samples. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "he", split="test[:2%]") # there is no common dataset for Hebrew, please, paste your data
processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
  tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on some Hebrew test data

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "he", split="test") # there is no common dataset for Hebrew, please, paste your data
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew").to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result:

Example Predictions

Downloads last month
250
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train imvladikon/wav2vec2-large-xlsr-53-hebrew

Collection including imvladikon/wav2vec2-large-xlsr-53-hebrew

Evaluation results

Model card error

This model's model-index metadata is invalid: Schema validation error. "model-index[0].results[0].dataset.type" must be a string. "model-index[0].results[0].dataset.name" must be a string