Edit model card

model-2024-06-06

This model is a fine-tuned version of microsoft/layoutlmv3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5257
  • Precision: 0.7422
  • Recall: 0.7427
  • F1: 0.7424
  • Accuracy: 0.8617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.6 100 1.4725 0.2387 0.0987 0.1396 0.6316
No log 1.19 200 0.9815 0.5362 0.434 0.4797 0.7585
No log 1.79 300 0.7596 0.6422 0.5707 0.6043 0.8071
No log 2.38 400 0.6719 0.6739 0.6433 0.6583 0.8240
1.1397 2.98 500 0.5865 0.7118 0.7013 0.7065 0.8429
1.1397 3.57 600 0.5910 0.7293 0.722 0.7256 0.8505
1.1397 4.17 700 0.5456 0.7373 0.726 0.7316 0.8524
1.1397 4.76 800 0.5343 0.7376 0.7327 0.7351 0.8557
1.1397 5.36 900 0.5327 0.7283 0.7487 0.7383 0.8569
0.4593 5.95 1000 0.5257 0.7422 0.7427 0.7424 0.8617

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.