inetnuc's picture
Update README.md
0a417ee verified
metadata
base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - gguf

LLAMA-3.1 8B Chat Turkish Model

  • Developed by: inetnuc
  • License: apache-2.0
  • Finetuned from model: unsloth/Meta-Llama-3.1-8B-bnb-4bit

This LLAMA-3.1 model was finetuned to enhance capabilities in text generation for nuclear-related topics. The training was accelerated using Unsloth and Huggingface's TRL library, achieving a 2x faster performance.

Finetuning Process

The model was finetuned using the Unsloth library, leveraging its efficient training capabilities. The process included the following steps:

  1. Data Preparation: Loaded and preprocessed turkish-related data.
  2. Model Loading: Utilized unsloth/llama-3-8b-bnb-4bit as the base model.
  3. LoRA Patching: Applied LoRA (Low-Rank Adaptation) for efficient training.
  4. Training: Finetuned the model using Hugging Face's TRL library with optimized hyperparameters.

Model Details

  • Base Model: unsloth/llama-3.1-8b-bnb-4bit
  • Language: English (en)
  • License: Apache-2.0

Author

MUSTAFA UMUT OZBEK

https://www.linkedin.com/in/mustafaumutozbek/ https://x.com/m_umut_ozbek

Usage

Loading the Model

You can load the model and tokenizer using the following code snippet:

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("inetnuc/TurkishLlama-3.1-8B-4bit-chat-nuclear-lora")
model = AutoModelForCausalLM.from_pretrained("inetnuc/TurkishLlama-3.1-8B-4bit-chat-nuclear-lora")

# Example of generating text
inputs = tokenizer("Türki̇ye'de nükleer enerji̇ yatirimlari artirilmali mi, ne düşünüyorsun?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))