YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

模型介绍

主要针对检索和语义匹配任务,本人实测要好于当前大多数向量模型。

支持多个向量维度:256,768,1024,1563,1792,2048,4096

支持中英互搜,但是英文表征能力要弱于中文

模型目录结构

结构很简单,就是标准的SentenceTransformer文件目录 + 一系列2_Dense_{dims}文件夹,dims代表最终的向量维度。

举个例子,2_Dense_256文件夹里存储了把向量维度转换为256维的Linear权重,具体如何使用请看下面的章节

模型使用方法

可直接用SentenceTransformer加载,也可以使用transformer加载使用:

import os
import torch
from transformers import AutoModel, AutoTokenizer
from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import normalize

# 待编码文本
texts = ["通用向量编码", "hello world", "支持中英互搜,不建议纯英文场景使用"]
# 模型目录
model_dir = "{MODEL_PATH}"

#### 方法1:使用SentenceTransformer
# !!!!!!!!!!!!!!默认是4096维度,如需其他维度,请自行复制2_Dense_{dims}中的文件到2_Dense文件夹中覆盖!!!!!!!!!!!!!!
model = SentenceTransformer(model_dir)
vectors = model.encode(texts, convert_to_numpy=True, normalize_embeddings=True)
print(vectors.shape)
print(vectors[:, :4])

#### 方法2:使用transformers库
# !!!!!!!!!!!!!! 本代码会根据vector_dim值会读取对应的Linear层权重,请按需选择vector_dim !!!!!!!!!!!!!!
vector_dim = 4096
model = AutoModel.from_pretrained(model_dir).eval()
tokenizer = AutoTokenizer.from_pretrained(model_dir)
vector_linear = torch.nn.Linear(in_features=model.config.hidden_size, out_features=vector_dim)
vector_linear_dict = {
    k.replace("linear.", ""): v for k, v in
    torch.load(os.path.join(model_dir, f"2_Dense_{vector_dim}/pytorch_model.bin")).items()
}
vector_linear.load_state_dict(vector_linear_dict)
with torch.no_grad():
    input_data = tokenizer(texts, padding="longest", truncation=True, max_length=512, return_tensors="pt")
    attention_mask = input_data["attention_mask"]
    last_hidden_state = model(**input_data)[0]
    last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
    vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
    vectors = normalize(vector_linear(vectors).cpu().numpy())
print(vectors.shape)
print(vectors[:, :4])
Downloads last month
48
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.