metadata
language:
- bas
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Basaa
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: bas
metrics:
- name: Test WER
type: wer
value: 104.08
- name: Test CER
type: cer
value: 228.48
wav2vec2-large-xls-r-300m-basaa
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BAS dataset. It achieves the following results on the evaluation set:
- Loss: 0.5975
- Wer: 0.4981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 200.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.9287 | 15.62 | 500 | 2.8774 | 1.0 |
1.1182 | 31.25 | 1000 | 0.6248 | 0.7131 |
0.8329 | 46.88 | 1500 | 0.5573 | 0.5792 |
0.7109 | 62.5 | 2000 | 0.5420 | 0.5683 |
0.6295 | 78.12 | 2500 | 0.5166 | 0.5395 |
0.5715 | 93.75 | 3000 | 0.5487 | 0.5629 |
0.5016 | 109.38 | 3500 | 0.5370 | 0.5471 |
0.4661 | 125.0 | 4000 | 0.5621 | 0.5395 |
0.423 | 140.62 | 4500 | 0.5658 | 0.5248 |
0.3793 | 156.25 | 5000 | 0.5921 | 0.4981 |
0.3651 | 171.88 | 5500 | 0.5987 | 0.4888 |
0.3351 | 187.5 | 6000 | 0.6017 | 0.4948 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0