infinitejoy's picture
evaluation results
ebffae3
|
raw
history blame
2.56 kB
metadata
language:
  - sk
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_7_0
  - generated_from_trainer
  - sk
  - robust-speech-event
  - model_for_talk
datasets:
  - common_voice
model-index:
  - name: XLS-R-300M - Slovak
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: sk
        metrics:
          - name: Test WER
            type: wer
            value: 24.852
          - name: Test CER
            type: cer
            value: 5.09
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: sk
        metrics:
          - name: Test WER
            type: wer
            value: 56.388
          - name: Test CER
            type: cer
            value: 20.654

wav2vec2-large-xls-r-300m-slovak

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SK dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2915
  • Wer: 0.2481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 3000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0076 19.74 3000 0.3274 0.3806
0.6889 39.47 6000 0.2824 0.2942
0.5863 59.21 9000 0.2700 0.2735
0.4798 78.95 12000 0.2844 0.2602
0.4399 98.68 15000 0.2907 0.2489

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0